Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 5 mặt phẳng cách đều 5 điểm S, A, B, C, D:
Mặt phẳng đi qua 4 trung điểm của 4 cạnh bên: có 1 mặt.
Mặt phẳng đi qua tâm O và song song với từng mặt bên : có 4 mặt như vậy
1) Gọi H là trung điểm của AB.
ΔSAB đều → SH ⊥ AB
mà (SAB) ⊥ (ABCD) → SH⊥ (ABCD)
Vậy H là chân đường cao của khối chóp.
2) Ta có tam giác SAB đều nên SA =a3√2
suy ra V=13SABCD.SH=a33√6
Phương pháp:
Xác định chiều cao hình chóp bằng kiến thức
Xác định khoảng cách
Tính toán bằng cách sử dụng quan hệ diện tích, định lý hàm số cosin, công thức tính diện tích tam giác S = 1 2 a.h với a là cạnh đáy, h là chiều cao tương ứng và
Cách giải:
Gọi H = AM ∪ BD
Ta có
Vì AB//CD nên theo định lý Ta-lét ta có
Ta có
Vì M là trung điểm của DC và ABCD là hình bình hành có diện tích 2 a 2 nên ta có:
Lại có CD = AB = a 2
Khi đó
Lại có
Từ đó
Chọn: C
Chọn đáp án D.
Ta có:
Kẻ
Kẻ
Xét tam giác SHI vuông tại H:
Xét tam giác SHB vuông tại B:
Chọn đáp án C
HC là hình chiếu của SC lên mặt phẳng (ABCD).
Góc giữa SC với mặt phẳng (ABCD) là: S C H ^ = 45 °
Kẻ
Kẻ
Ta có:
Tam giác SHC vuông cân tại H vì
Mặt khác: HI = AD = a
Xét tam giác SHI vuông tại H: