Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C
HC là hình chiếu của SC lên mặt phẳng (ABCD).
Góc giữa SC với mặt phẳng (ABCD) là: S C H ^ = 45 °
Kẻ
Kẻ
Ta có:
Tam giác SHC vuông cân tại H vì
Mặt khác: HI = AD = a
Xét tam giác SHI vuông tại H:
\(\begin{cases}\left(SIB\right)\perp\left(ABCD\right)\\\left(SIC\right)\perp\left(ABCD\right)\end{cases}\) \(\Rightarrow SI\perp\left(ABCD\right)\)
Kẻ \(IK\perp BC\left(K\in BC\right)\Rightarrow BC\perp\left(SIK\right)\)\(\Rightarrow\widehat{SKI}=60^0\)
Diện tích hình thang ABCD : \(S_{ABCD}=3a^2\)
Tổng diện tích các tam giá ABI và CDI bằng \(\frac{3a^2}{2}\) Suy ra \(S_{\Delta IBC}=\frac{3a^2}{2}\)
\(BC=\sqrt{\left(AB-CD\right)^2+AD^2}=a\sqrt{5}\)
\(\Rightarrow IK=\frac{2S_{\Delta IBC}}{BC}=\frac{3\sqrt{5}a}{5}\)
\(\Rightarrow SI=IK.\tan\widehat{SKI}=\frac{3\sqrt{15}a}{5}\)
Thể tích của khối chóp S.ABCD : \(V=\frac{1}{3}S_{ABCD}.SI=\frac{3\sqrt{15}a^2}{5}\)
Chọn đáp án D.
Ta có:
Kẻ
Kẻ
Xét tam giác SHI vuông tại H:
Xét tam giác SHB vuông tại B: