K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

 

undefined

 

15 tháng 12 2021

Cảm ơn bạn nhiều !!!

a: \(M\in\left(BMN\right);M\in SA\subset\left(SAC\right)\)

=>\(M\in\left(BMN\right)\cap\left(SAC\right)\)

\(C\in BN\subset\left(BMN\right);C\in\left(SAC\right)\)

=>\(C\in\left(BMN\right)\cap\left(SAC\right)\)

Do đó: \(CM=\left(BMN\right)\cap\left(SAC\right)\)

b: Xét (BMN) và (SAD) có

BN//AD

\(M\in\left(BMN\right)\cap\left(SAD\right)\)

Do đó: \(\left(BMN\right)\cap\left(SAD\right)=xy\); xy đi qua M và xy//BN//AD
d: Xét (MCD) và (SAB) có

CD//AB

\(M\in\left(MCD\right)\cap\left(SAB\right)\)

Do đó: (MCD) giao (SAB)=ab, ab đi qua M và ab//CD//AB

9 tháng 12 2021

9 tháng 12 2021

1: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

=>\(\left(SAC\right)\cap\left(SBD\right)=SO\)

AB//CD

S thuộc (SAB) giao (SCD)

=>(SAB) giao (SCD)=xy, xy qua S, xy//AB//DC

2: 

Xét ΔSBC có SM/SB=SN/SC

nên MN//BC

=>MN//AD

=>AMND là hình thang

Xét ΔSBD có BM/BS=BO/BD

nên MO//SD

=>MO//(SAD)