K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

Đáp án A

Giả sử  S A → = x S A ' → ;    S B → = y S B ' → ;    S C → = z S C ' →   .

Gọi G là trọng tâm tam giác ABC ⇒ G A → + G B → + G C → = 0 .

⇒ 3 G S → + S A → + S B → + S C → = 0

⇒ S G → = S A → 3 + S B → 3 + S C → 3 ⇒ S G → = x 3 . S A ' → + y 3 . S B ' → + z 3 . S C ' →    1

Do   A ' B ' C ' đi qua G nên ba vectơ   G A ' → ; G B ' → ; G C ' → đồng phẳng

Suy ra tồn tại 3 số   i ; m ; n , i 2 + m 2 + n 2 ≠ 0 sao cho  i . G A ' → + m . G B ' → + n . G C ' → = 0

i + m + n . G S → + i . S A ' → + m . S B ' → + n . S C ' → = 0

⇒ S G → = i i + m + n S A ' → + m i + m + n S B ' → + n i + m + n . S C ' →    2

Do S G ; S A ' ; S B ' ; S C '  không đồng phẳng nên từ (1) và (2) ta có

x 3 = i i + m + n ;    y 3 = m i + m + n ;     z 3 = n i + m + n

x + y + z 3 = i + m + n i + m + n = 1 ⇒ x + y + z = 3

Ta có  1 S A ' 2 + 1 S B ' 2 + 1 S C ' 2 = x 2 a 2 + y 2 b 2 + z 2 c 2

Áp dụng bất đẳng thức Bunyakovsky cho hai bộ số thực   x a ; y b ; z c và   a ; b ; c ta có .

x 2 a 2 + y 2 b 2 + z 2 c 2 a 2 + b 2 + c 2 ≥ x + y + z 2

⇔ 1 S A ' 2 + 1 S B ' 2 + 1 S C ' 2 ≥ x + y + z 2 a 2 + b 2 + c 2 = 3 a 2 + b 2 + c 2

Dấu “=” xảy ra khi  x 2 a 2 = y 2 b 2 = z 2 c 2

29 tháng 1 2018

Đáp án D.

Gọi B',C' là trung điểm SB,SC  ⇒ Thiết diện là Δ A B ' C '  

Ta có  S A ' B ' C ' = 1 2 A B ' 2 . A C ' 2 - A B '   → . A C '   → 2

A B '   → = 1 2 S B   → - S A   → ⇒ A B ' 2 = 1 4 S B 2 + S A 2 - S A   → . S B   → = a 2 4 5 - 4 cos   α

 

Tương tự ta có A B ' → . A C '   → = a 2 4 4 - 3 cos α  

Vậy S A B ' C ' = 1 2 a 4 16 5 - 4 cos α 2 - a 4 16 4 - 3 cos α 2 = a 2 8 7 cos 2 α - 16 cos α + 9  

18 tháng 12 2017

Chọn A

Xét một trường hợp đặc biệt của các điểm M, E, F ta tính được T = 1.

28 tháng 2 2018

29 tháng 12 2017

 

14 tháng 1 2017

Đáp án đúng : C

10 tháng 3 2019

 

Phương pháp:

Sử dụng tỉ số diện tích, tỉ số thể tích để tính thể tích khối tứ diện MBSI thông qua thể tích khối tứ diện vuông SABC.

 

 

 

 

 

 

 

 

 

 

 

 

Áp dụng định lí Menelaus trong tam giác APD ta có:

 

29 tháng 7 2017

10 tháng 6 2019

Đáp án D