K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 1

Bài này ứng dụng bài toán đồng phẳng đã chứng minh cho em hồi sáng:

4 điểm M, A', B', C', D' đồng phẳng nên với điểm S bất kì ta có:

\(\overrightarrow{SM}=m.\overrightarrow{SA'}+n.\overrightarrow{SB'}+p.\overrightarrow{SC'}\)

Khi đó \(m+n+p=1\)

Giải như sau:

Đặt \(\dfrac{SA}{SA'}=x;\dfrac{SB}{SB'}=y;\dfrac{SC}{SC'}=z\)

\(\Rightarrow\overrightarrow{SA}=x.\overrightarrow{SA'};\overrightarrow{SB}=y.\overrightarrow{SB'};\overrightarrow{SC}=z.\overrightarrow{SC'}\)

Do G là trọng tâm ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{GS}+\overrightarrow{SA}+\overrightarrow{GS}+\overrightarrow{SB}+\overrightarrow{GS}+\overrightarrow{SC}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}=3\overrightarrow{SG}\)

\(\Rightarrow x.\overrightarrow{SA'}+y.\overrightarrow{SB'}+z.\overrightarrow{SC'}=3\overrightarrow{SG}=6\overrightarrow{SM}\) (do M là trung điểm SG)

\(\Rightarrow\dfrac{x}{6}.\overrightarrow{SA'}+\dfrac{y}{6}.\overrightarrow{SB'}+\dfrac{z}{6}.\overrightarrow{SC'}=\overrightarrow{SM}\)

Do M;A';B';C' đồng phẳng 

\(\Rightarrow\dfrac{x}{6}+\dfrac{y}{6}+\dfrac{z}{6}=1\) \(\Rightarrow x+y+z=6\)

\(\Rightarrow\dfrac{SA}{SA'}+\dfrac{SB}{SB'}+\dfrac{SC}{SC'}=6\)

Với bài toán trắc nghiệm (hoặc cần kiểm chứng kết quả) chỉ cần chọn trường hợp đặc biệt là (P) song song đáy, khi đó theo Talet thì A', B', C' lần lượt là trung điểm các cạnh nên ta dễ dàng tính ra tổng cần tính là 2+2+2=6

7 tháng 1

Anh ơi! Đoạn Do M;A'B'C' đồng phẳng nên \(\overrightarrow{SA'}+\overrightarrow{SB'}+\overrightarrow{SC'}=\overrightarrow{SM}\) ạ 

 

 

NV
7 tháng 1

O' là điểm nào em nhỉ?

7 tháng 1

Anh biết ở đâu không ạ anh, cô em ra đề chắc cho sai ở đâu đó ạ

NV
7 tháng 1

Em kiểm tra lại đề, \(\left(\alpha\right)\) đi qua AI nên nó không thể cắt SA tại M được nữa (vì nó đi qua A nên đã cắt SA tại A rồi)

7 tháng 1

Anh ơi, (a) qua điểm I có đúng không ạ anh, vì đề mờ chỗ đấy anh ạ, chắc chỉ qua điểm I thôi ạ 

a: SO vuông góc (ABC)

=>(SGO) vuông góc (ABC)

b: ((SAB);(ABC))=(SG;AG)=góc SGA

\(AG=\dfrac{a\sqrt{3}}{3}\)

cos SGA=AG/SA=căn 3/3:2=căn 3/6

=>góc SGA=73 độ

NV
7 tháng 1

a/ Gọi M là trung điểm BC, nối SM cắt B'C' tại M'

Trong mặt phẳng (SAM), nối SG cắt A'M' tại Q

Q là giao điểm SG và (P)

b/ Ủa sao điểm D chẳng liên quan gì vậy ta, 2 câu rồi em nó vẫn bị ngó lơ.

Trong mặt phẳng (SCD), qua B và C lần lượt kẻ các đường thẳng song song SM, cắt B'C' kéo dài tại \(B_1\)\(C_1\)

Áp dụng talet: \(\frac{BB_1}{SM'}=\frac{BB'}{SB'}\Rightarrow1+\frac{BB_1}{SM'}=\frac{BB'}{SB'}+1=\frac{SB}{SB'}\)

Tương tự ta có: \(1+\frac{CC_1}{SM'}=\frac{SC}{SC'}\)

Cộng vế với vế: \(2+\frac{BB_1+CC_1}{SM'}=\frac{SB}{SB'}+\frac{SC}{SC'}\)

\(BB_1+CC_1=2MM'\) (t/c đường trung bình hình thang)

\(\Rightarrow2+\frac{2MM'}{SM'}=\frac{SB}{SB'}+\frac{SC}{SC'}\Rightarrow\frac{SB}{SB'}+\frac{SC}{SC'}=\frac{2\left(SM'+MM'\right)}{SM'}=\frac{2SM}{SM'}\)

Gọi N là trung điểm AM, trong mp (SAM), SN cắt A'M' tại N'

Hoàn toàn tương tự, ta có: \(\frac{SA}{SA'}+\frac{SM}{SM'}=\frac{2SN}{SN'}\)

\(\Rightarrow\frac{2SA}{SA'}+\frac{SB}{SB'}+\frac{SC}{SC'}=\frac{2SA}{SA'}+\frac{2SM}{SM'}=\frac{4SN}{SN'}\)

\(\Rightarrow\frac{4SN}{SN'}=8\Rightarrow SN'=\frac{1}{2}SN\)

\(\Rightarrow N'\) là trung điểm SN

Mà A; M; S cố định \(\Rightarrow N'\) cố định

\(\Rightarrow\left(P\right)\) luôn đi qua điểm N' cố định

ak e xl, cho hình chóp S.ABC

7 tháng 7 2017

27 tháng 10 2023

Gọi E là giao điểm của CG với AB, F là giao điểm của AG với BC

Xét ΔABC có

G là trọng tâm

AG cắt BC tại F

Do đó: F là trung điểm của BC

Xét ΔABC có

G là trọng tâm

CG cắt AB tại E

Do đó: E là trung điểm của AB

Chọn mp(SEC) có chứa SG

Trong mp(SAB), gọi K là giao điểm của BM với SE

\(K\in SE\subset\left(SEC\right);K\in BM\subset\left(BMN\right)\)

=>\(K\in\left(SEC\right)\cap\left(BMN\right)\)

\(N\in SC\subset\left(SEC\right);N\in\left(BMN\right)\)

=>\(N\in\left(SEC\right)\cap\left(BMN\right)\)

=>\(\left(SEC\right)\cap\left(BMN\right)=KN\)

Gọi I là giao điểm của SG với KN

=>I là giao điểm của SG với mp(BMN)

24 tháng 5 2018

Đáp án D.

Gọi B', C' là trung điểm SB, SC. Thiết diện là ∆ AB'C'

Ta có 

Tương tự ta có 

Vậy 

24 tháng 12 2023

1

24 tháng 12 2023

1