K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

Chọn đáp án B

Gọi là H hình chiếu của đỉnh S xuống mặt phẳng (ABC). Khi đó, ta có

 

Ta có

Tương tự, ta cũng chứng minh được

Từ đó suy ra 

Do SH ⊥ AB, BH ⊥ AB nên suy ra góc giữa (SAB) (ABC) là góc SBH. Vậy SBH =  60 0

Trong tam giác vuông ABH, ta có

Trong tam giác vuông SHB, ta có

7 tháng 11 2019

Đáp án C

22 tháng 2 2018

Chọn A

Gọi H là trung điểm của AC. Đỉnh S cách đều các điểm A, B, C 

=> SH  ⊥ (ABC)

Xác đinh được 

Ta có MH // SA

Gọi I là trung điểm của AB => HI ⊥ AB

và chứng minh được HK  ⊥ (SAB)

Trong tam giác vuông SHI tính được 

6 tháng 6 2017

+ Ta có  S A B ⊥ A B C S A C ⊥ A B C S A C ∩ S A B = S A ⇒ S A ⊥ A B C

+ Xác định điểm N, mặt phẳng qua SM và song song với BC cắt AC tại N ⇒  N là trung điểm của AC (MN//BC).

+ Xác định được góc giữa hai mặt phẳng (SBC) và (ABC) là  S B A ^ = 60 °

⇒  SA = AB.tan 60 °  = 2a 3

AC =  A B 2 + B C 2 = 2 a 2

+ Gọi IJ là đoạn vuông góc chung của AB và SN (điểm I thuộc AB và điểm J thuộc SN). Vậy khoảng cách giữa AB và SN là IJ. Ta sẽ biểu thị IJ → qua ba vectơ không cùng phương  A B → ;   A C → ;   A S → .

I J → = I A → + A N → + N J → = m A B → + 1 2 A C → + p N S → = m A B → + 1 2 A C → + p N A → + A S → = m A B → + 1 − p 2 A C → + p A S →

Ta có: I J → ⊥ A B → I J → ⊥ N S → ⇔ I J → . A B → = 0 I J → . N S → = 0  

Thay vào ta tính được m = -6/13; p = 1/13

Do đó: I J → = − 6 13 A B → + 6 13 A C → + 1 13 A S → . Suy ra

169 I J 2 = 36 A C 2 + 36 A B 2 + A S 2 − 72 A B → . A C → .

Thay số vào ta tính được IJ = 2 a 39 13 .

Vậy d(AB; SN) = 2 a 39 13 .

Đáp án D

6 tháng 1 2017

Đáp án A

Gọi I,H lần lượt là hình chiếu vuông góc của A trên BC, SI, khi đó: d(A, (SBC)) =AH

Tam giác ABC đều cạnh a nên AI =  a 3 2

Khi đó xét tam giác SAI :

11 tháng 6 2019

16 tháng 2 2017

Đáp án B

Vì tam giác SAB cân tại S nên hạ SH ⊥ AB => H là trung điểm của AB.

Vì 

Tam giác SAB vuông cân tại S nên SA = SB =  a 2