K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 2 2021

Kẻ \(BK\perp AC\Rightarrow BK\perp\left(SAC\right)\)

\(\Rightarrow BK=d\left(B;\left(SAC\right)\right)\)

\(\dfrac{1}{BK^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow BK=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{a\sqrt{3}}{2}\)

Kẻ \(CP\perp BH\Rightarrow CP\perp\left(SBH\right)\)

\(\Rightarrow CP=d\left(C;\left(SBH\right)\right)\)

\(\widehat{CBP}=\widehat{ACB}=30^0\Rightarrow CH=BC.sin30^0=\dfrac{a\sqrt{3}}{2}\)

\(BH=\dfrac{AC}{2}=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)\(\Rightarrow SH=\sqrt{SB^2-BH^2}=a\)

Kẻ \(HE\perp BC\) , kẻ \(HF\perp SE\Rightarrow HF=d\left(H;\left(SBC\right)\right)\)

\(HE=CH.sin30^0=\dfrac{a}{2}\) 

\(\dfrac{1}{HF^2}=\dfrac{1}{SH^2}+\dfrac{1}{HE^2}\Rightarrow HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{5}}{5}\)

NV
9 tháng 4 2021

Gọi M là trung điểm AB là N là trung điểm BM

\(\Rightarrow CM\perp AB\) (trung tuyến đồng thời là đường cao trong tam giác đều)

NH là đường trung bình tam giác BCM \(\Rightarrow NH||CM\Rightarrow NH\perp AB\)

\(\Rightarrow AB\perp\left(SNH\right)\) \(\Rightarrow\left(SAB\right)\perp\left(SNH\right)\) với SN là giao tuyến

Trong mp (SNH), từ H kẻ \(HK\perp SN\Rightarrow HK\perp\left(SAB\right)\Rightarrow HK=d\left(H;\left(SAB\right)\right)\)

\(CM=\dfrac{AC\sqrt{3}}{2}=6a\) ; \(NH=\dfrac{1}{2}CM=3a\)

\(\widehat{SNH}=60^0\Rightarrow HK=NH.sin60^0=\dfrac{3a\sqrt{3}}{2}\)

22 tháng 2 2018

Chọn A

Gọi H là trung điểm của AC. Đỉnh S cách đều các điểm A, B, C 

=> SH  ⊥ (ABC)

Xác đinh được 

Ta có MH // SA

Gọi I là trung điểm của AB => HI ⊥ AB

và chứng minh được HK  ⊥ (SAB)

Trong tam giác vuông SHI tính được 

22 tháng 7 2019

ĐÁP ÁN: B

10 tháng 7 2019

Chọn đáp án B

Gọi là H hình chiếu của đỉnh S xuống mặt phẳng (ABC). Khi đó, ta có

 

Ta có

Tương tự, ta cũng chứng minh được

Từ đó suy ra 

Do SH ⊥ AB, BH ⊥ AB nên suy ra góc giữa (SAB) (ABC) là góc SBH. Vậy SBH =  60 0

Trong tam giác vuông ABH, ta có

Trong tam giác vuông SHB, ta có

NV
14 tháng 4 2022

Gọi D là trung điểm AB \(\Rightarrow HD\) là đường trung bình tam giác ABC

\(\Rightarrow\left\{{}\begin{matrix}HD||AC\Rightarrow HD\perp AB\\HD=\dfrac{1}{2}AC=\dfrac{a}{2}\end{matrix}\right.\)

\(\Rightarrow AB\perp\left(SHD\right)\)

\(\Rightarrow\widehat{SDH}\) là góc giữa (SAB) và đáy

\(\Rightarrow\widehat{SDH}=60^0\)

\(\Rightarrow SH=DH.tan60^0=\dfrac{a\sqrt{3}}{2}\)

Từ H kẻ \(HK\perp SD\) (K thuộc SD)

\(\Rightarrow HK\perp\left(SAB\right)\Rightarrow HK=d\left(H;\left(SAB\right)\right)\)

\(HK=\dfrac{SH.DH}{\sqrt{SH^2+DH^2}}=\dfrac{a\sqrt{3}}{4}\)

NV
14 tháng 4 2022

undefined

12 tháng 2 2018

Đáp án C

Dựng  

Dựng

=> d(B;(SAC))

21 tháng 5 2022

Hình bạn tự vẽ nha mình biếng á chứ khog có j đou=)

Ta có : \(\left\{{}\begin{matrix}CA\perp AB\\\left(ABC\right)\perp\left(SAB\right)\\\left(ABC\right)\cap\left(SAB\right)=AB\end{matrix}\right.\) \(\Rightarrow CA\perp\left(SAB\right)\)

Kẻ \(AK\perp SB\) và \(AH\perp CK\) tại H.

Ta có : \(\left\{{}\begin{matrix}SB\perp AK\\SB\perp CA\end{matrix}\right.\) \(\Rightarrow SB\perp\left(ACK\right)\Rightarrow SB\perp AH\)

Do : \(\left\{{}\begin{matrix}AH\perp CK\\AH\perp SB\end{matrix}\right.\) \(\Rightarrow AH\perp\left(SBC\right)\Rightarrow d\left(A;\left(SBC\right)\right)=AH\)

Xét t/g ABK , ta có : AK = AB

=> \(sin\widehat{ABK}=\alpha sin60^o=\dfrac{a\sqrt{3}}{2}\)

Xét t/g ACK , ta có : \(\dfrac{1}{AH^2}=\dfrac{1}{AK^2}+\dfrac{1}{AC^2}=\dfrac{7}{3a^2}\Rightarrow AH=\dfrac{a\sqrt{21}}{7}\)