K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

(h.2.73) a) Gọi O = AC ∩ MD Trong mặt phẳng (SMB) gọi I = SO ∩ MN.

Ta có: I = (SAC) ∩ MN

b) AD // BC (BC ⊂ (SBC))

⇒ AD // (SBC). Mặt phẳng (SAD) cắt mặt phẳng (NBC) theo giao tuyến NP // AD (P ∈ SA). Ta có thiết diện cần tìm là hình thang BCNP.

7 tháng 11 2019

Giải bài 3 trang 77 sgk Hình học 11 | Để học tốt Toán 11

a) Tìm (SAD) ∩ (SBC)

Gọi E= AD ∩ BC. Ta có:

Giải bài 3 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Do đó E ∈ (SAD) ∩ (SBC).

mà S ∈ (SAD) ∩ (SBC).

⇒ SE = (SAD) ∩ (SBC)

b) Tìm SD ∩ (AMN)

+ Tìm giao tuyến của (SAD) và (AMN) :

Trong mp (SBE), gọi F = MN ∩ SE :

F ∈ SE ⊂ (SAD) ⇒ F ∈ (SAD)

F ∈ MN ⊂ (AMN) ⇒ F ∈ (AMN)

⇒ F ∈ (SAD) ∩ (AMN)

⇒ AF = (SAD) ∩ (AMN).

+ Trong mp (SAD), gọi AF ∩ SD = P

⇒ P = SD ∩ (AMN).

c) Tìm thiết diện với mp(AMN):

(AMN) ∩ (SAB) = AM;

(AMN) ∩ (SBC) = MN;

(AMN) ∩ (SCD) = NP

(AMN) ∩ (SAD) = PA.

⇒ Thiết diện cần tìm là tứ giác AMNP.

11 tháng 12 2023

a: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

b: Xét ΔSAB có

M,N lần lượt là trung điểm của AS,AB

=>MN là đường trung bình của ΔSAB

=>MN//SB

Ta có: MN//SB

SB\(\subset\)(SBC)

MN ko nằm trong mp(SBC)

Do đó: MN//(SBC)

NV
21 tháng 12 2022

a.

Trong mp (ABCD), kéo dài AD và BC cắt nhau tại E

\(\left\{{}\begin{matrix}E\in AD\in\left(SAD\right)\\E\in BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow E\in\left(SAD\right)\cap\left(SBC\right)\)

\(\Rightarrow SE=\left(SAD\right)\cap\left(SBC\right)\)

b.

Gọi O là giao điểm AC và BD \(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)

Trong mp (SBD), nối DM cắt SO tại I

\(\left\{{}\begin{matrix}I\in SO\in\left(SAC\right)\\I\in DM\end{matrix}\right.\)

\(\Rightarrow I=DM\cap\left(SAC\right)\)

c.

Gọi F là trung điểm SA \(\Rightarrow FM\) là đường trung bình tam giác SAB

\(\Rightarrow FM||AB\Rightarrow FM||CD\)

Mà \(M\in\left(MCD\right)\Rightarrow F\in\left(MCD\right)\)

\(\Rightarrow\) Tứ giác CDFM là thiết diện của (MCD) và chóp

NV
21 tháng 12 2022

loading...

31 tháng 3 2017

a) (SAD) ∩ (SBC) = SE

b) Trong (SBE): MN ∩ SE = F

Trong (SAE): AF ∩ SD = P là điểm cần tìm

c) Thiết diện là tứ giác AMNP

TenAnh1 A = (-0.14, -7.4) A = (-0.14, -7.4) A = (-0.14, -7.4) B = (14.46, -7.36) B = (14.46, -7.36) B = (14.46, -7.36) C = (-3.74, -5.6) C = (-3.74, -5.6) C = (-3.74, -5.6) D = (11.62, -5.6) D = (11.62, -5.6) D = (11.62, -5.6)

26 tháng 10 2023

S A B C D M N O G K H P Q

a/

Ta có

\(S\in\left(SAC\right);S\in\left(SBD\right)\)

Trong mp (ABCD) gọi O là giao của AC và BD

\(O\in AC\Rightarrow O\in\left(SAC\right);O\in BD\Rightarrow O\in\left(SBD\right)\)

\(\Rightarrow SO\in\left(SAC\right)\) và \(SO\in\left(SBD\right)\) => SO là giao tuyến của (SAC) và (SBD)

b/

Trong mp (ABCD) Từ G dựng đường thẳng // AC cắt BC tại K

Xét tg SAC có

SM=AM (gt); SN=CN (gt) => MN là đường trung bình của tg SAC

=> MN//AC

Mà GM//AC

=> MN//GK mà \(G\in\left(GMN\right)\Rightarrow GK\in\left(GMN\right)\) (Từ 1 điểm trong mặt phẳng chỉ dựng được duy nhất 1 đường thẳng thuộc mặt phẳng đó và // với 1 đường thẳng cho trươc thuộc mặt phẳng)

\(\Rightarrow K\in\left(GMN\right);K\in BC\) => K llaf giao của BC với (GMN)

c/

Ta có

\(KN\in\left(GMN\right);KN\in\left(SBC\right)\) => KN là giao tuyến của (GMN) với (SBC)

Trong (ABCD) KG cắt AB tại H

\(KG\in\left(GMN\right)\Rightarrow KH\in\left(GMN\right)\)

\(KG\in\left(ABCD\right)\Rightarrow KH\in\left(ABCD\right)\)

=> KH là giao tuyến của (GMN) với (ABCD)

Ta có 

\(HM\in\left(SAB\right);HM\in\left(GMN\right)\) => HM là giao tuyến của (GMN) với (SAB)

Trong mp(SAC) gọi P là giao của SO với MN

\(P\in MN\Rightarrow P\in\left(GMN\right)\)

Trong mp(SBD) Nối G với P cắt SD tại Q

\(\Rightarrow GP\in\left(GMN\right)\Rightarrow Q\in GMN\)

\(\Rightarrow MQ\in\left(GMN\right)\) mà \(MQ\in\left(SAD\right)\) => MQ là giao tuyến của (GMN) với (SAD)

Ta có

\(NQ\in\left(GMN\right);NQ\in\left(SCD\right)\) => NQ là giao tuyến của (GMN) với (SCD)

=> thiết diện của hình chóp bị cắt bởi (GMN) là đa giác HMQNK