Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét và có:
DE=FB
=
AB = DC
=(c.g.c)
EC= AF
Ta có: ^DEC + ^FEC = ^AFB+^EFC=180* mà ^DEC=^AFB
-> ^FEC=^EFC -> AF//CE
Tứ giác AFCE có: EC=AF và AF//CE -> AFCE là hình bình hành
b, Gọi O là giao điểm của AC và EF -> O thuộc BD ( E,F thuộc BD )
Tứ giác ANCM có: AN// MC , AM//CN -> ANCM là hình bình hành.
-> O là giao điểm của AC và MN
-> AC, MN,BD đồng quy tại O
1:
a: Xét tứ giác BMDN có
DM//BN
DM=BN
Do đó: BMDN là hình bình hành
Suy ra: BM//DN
a: AE\(\perp\)BD
CF\(\perp\)BD
Do đó: AE//CF
Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
=>AE=CF
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: AE//CF
E\(\in\)AH
F\(\in\)CK
Do đó: AH//CK
AB//CD
K\(\in\)AB
H\(\in\)CD
Do đó: AK//CH
Xét tứ giác AHCK có
AH//CK
AK//CH
Do đó: AHCK là hình bình hành
=>AC cắt HK tại trung điểm của mỗi đường(1)
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,HK,BD đồng quy
a: Xét ΔAED và ΔCFB có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
DE=BF
Do đó: ΔAED=ΔCFB
Suy ra: AE=CF
Xét ΔABF và ΔCDE có
AB=CD
\(\widehat{ABF}=\widehat{CDE}\)
BF=DE
Do đó: ΔABF=ΔCDE
Suy ra: AF=CE
Xét tứ giác AECF có
AF=CE
AE=CF
Do đó: AECF là hình bình hành