Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Do AE = CF nên ED = BF.
Xét tam giác MBF và NDE có:
BM = DN (gt)
BF = DE (cmt)
\(\widehat{MBF}=\widehat{NDE}\) (Hai góc đối của hình bình hành)
\(\Rightarrow\Delta MBF=\Delta NDE\left(c-g-c\right)\Rightarrow MF=EN.\)
Tương tự EM = NF. Từ đó suy ra EMFN là hình bình hành.
b. Dễ thấy MBND là hình bình hành. Xét đường chéo của hình bình hành:
Trong hbh ABCD: AC cắt BD tại trung điểm mỗi đường
Trong hbh MBND: BD cắt MN tại trung điểm mỗi đường
Trong hbh EMFN: MN cắt EF tại trung điểm mỗi đường
Vậy 4 đường thẳng trên đồng quy tại O.
Ta có AECF là hình bình hành=> EF cắt AC ở trung điểm I của mỗi đường
AMCN là hình bình hành=>MN cắt AC ở trung điểm của mỗi đường
=>EF cắt MN ở trung điểm mỗi đường=> ĐPCM
a: Ta có: BE+AE=BA
DF+FC=DC
mà BA=DC
và AE=FC
nên BE=DF
Ta có: AN+ND=AD
CM+MB=CB
mà AD=CB
và AN=CM
nên ND=MB
Xét ΔANE và ΔCMF có
AN=CM
\(\widehat{A}=\widehat{C}\)
AE=CF
Do đó: ΔANE=ΔCMF
Suy ra: NE=MF
Xét ΔEBM và ΔFDN có
EB=FD
\(\widehat{B}=\widehat{D}\)
BM=DN
Do đó: ΔEBM=ΔFDN
Suy ra: EM=FN
Xét tứ giác MENF có
ME=NF
NE=MF
Do đó: MENF là hình bình hành
a: Xét tứ giác AECF có
AE//CF
AE=CF
=>AECF là hình bình hành
b: BE+AE=BA
CF+FD=CD
mà AE=CF và AB=CD
nên BE=DF
Xét tứ giác BEDF có
BE//DF
BE=DF
=>BEDF là hbh
=>BF//DE
c: ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường(1)
AECF là hbh
=>AC cắt EF tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AC,BD,EF đồng quy
.a.
Vì `EF` là đường trung trực MB.
=> `EM=EB`
=> `ΔEMB` cân tại E
=> \(\widehat{EMB}=\widehat{EBM}\)
Chứng minh tương tự được: \(\widehat{FMB}=\widehat{FBM}\)
Vì `AM=DN` mà AM//DN
=> Tứ giác `AMND` là hình bình hành.
b.
Từ câu (a) suy ra:
ME//BF
BE//FM
=> Hình bình hành MEBF có `EF⊥MB`
=> Tứ giác MEBF là hình thoi