K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

A B C D E F M N O

a. Do AE = CF nên ED = BF. 

Xét tam giác MBF và NDE có:

BM = DN (gt)

BF = DE (cmt)

\(\widehat{MBF}=\widehat{NDE}\) (Hai góc đối của hình bình hành)

\(\Rightarrow\Delta MBF=\Delta NDE\left(c-g-c\right)\Rightarrow MF=EN.\)

Tương tự EM = NF. Từ đó suy ra EMFN là hình bình hành.

b. Dễ thấy MBND là hình bình hành. Xét đường chéo của hình bình hành:

Trong hbh ABCD: AC cắt BD tại trung điểm mỗi đường

Trong hbh MBND: BD cắt MN tại trung điểm mỗi đường

Trong hbh EMFN: MN cắt EF tại trung điểm mỗi đường

Vậy 4 đường thẳng trên đồng quy tại O.

17 tháng 10 2019

cảm ơn ạ

19 tháng 9 2019

A B C D E F M N I

Ta có AECF là hình bình hành=> EF cắt AC ở trung điểm I của mỗi đường

AMCN là hình bình hành=>MN cắt AC ở trung điểm của mỗi đường

=>EF cắt MN ở trung điểm mỗi đường=> ĐPCM

a: Ta có: BE+AE=BA

DF+FC=DC

mà BA=DC

và AE=FC

nên BE=DF

Ta có: AN+ND=AD

CM+MB=CB

mà AD=CB

và AN=CM

nên ND=MB

Xét ΔANE và ΔCMF có 

AN=CM

\(\widehat{A}=\widehat{C}\)

AE=CF

Do đó: ΔANE=ΔCMF

Suy ra: NE=MF

Xét ΔEBM và ΔFDN có 

EB=FD

\(\widehat{B}=\widehat{D}\)

BM=DN

Do đó: ΔEBM=ΔFDN

Suy ra: EM=FN

Xét tứ giác MENF có 

ME=NF

NE=MF

Do đó: MENF là hình bình hành

13 tháng 9 2021
Là ae =cflaf
17 tháng 9 2021

what the f''''ck

a: Xét tứ giác AECF có

AE//CF

AE=CF

=>AECF là hình bình hành

b: BE+AE=BA

CF+FD=CD

mà AE=CF và AB=CD

nên BE=DF

Xét tứ giác BEDF có

BE//DF

BE=DF

=>BEDF là hbh

=>BF//DE

c: ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường(1)

AECF là hbh

=>AC cắt EF tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AC,BD,EF đồng quy

22 tháng 8 2023

.a.

Vì `EF` là đường trung trực MB.

=> `EM=EB`

=> `ΔEMB` cân tại E

=> \(\widehat{EMB}=\widehat{EBM}\)

Chứng minh tương tự được: \(\widehat{FMB}=\widehat{FBM}\)

Vì `AM=DN` mà AM//DN

=> Tứ giác `AMND` là hình bình hành.

b.

Từ câu (a) suy ra: 

ME//BF

BE//FM

=> Hình bình hành MEBF có `EF⊥MB`

=> Tứ giác MEBF là hình thoi