Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: DF=FE=CE(gt)
mà DF+FE+CE=DC
nên \(DF=FE=CE=\dfrac{DC}{3}\)
Xét tứ giác ABFD có
AB//FD(gt)
AB=FD
Do đó: ABFD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét tứ giác ABEF có
AB//EF(gt)
AB=EF(cmt)
Do đó: ABEF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: AF=BE(Hai cạnh đối)
c) Xét tứ giác ABCE có
AB//CE
AB=CE
Do đó: ABCE là hình bình hành
Suy ra: AE=BC
Xét và có:
DE=FB
=
AB = DC
=(c.g.c)
EC= AF
Ta có: ^DEC + ^FEC = ^AFB+^EFC=180* mà ^DEC=^AFB
-> ^FEC=^EFC -> AF//CE
Tứ giác AFCE có: EC=AF và AF//CE -> AFCE là hình bình hành
b, Gọi O là giao điểm của AC và EF -> O thuộc BD ( E,F thuộc BD )
Tứ giác ANCM có: AN// MC , AM//CN -> ANCM là hình bình hành.
-> O là giao điểm của AC và MN
-> AC, MN,BD đồng quy tại O
a) AE=FC
AB=CD
=> DF=EB
AD=BC
góc ADF=EBC
=> tam giác ADF = CBE ( c-g-c)
=> AF=EC
giải giúp câu c