K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 12 2020

\(\overrightarrow{AD}+2\overrightarrow{AB}=\overrightarrow{AD}+\overrightarrow{AB}+\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{AB}=2\overrightarrow{AI}\) (đpcm)

28 tháng 10 2017

xét tứ giác AECF: có AE = FC và AE//FC => AECF là hình bình hành => AF//CE

xét △DNC: có F là trung điểm của DC và FM//CN (đường tb) => M là trung điểm của DN => vtDM = vtMN (1)

xét △BMA: có E là trung điểm của AB và NE//AM ( đường tb) => N là trung điểm của MB => BM=MN (2)

từ (1) và (2) suy ra : DM=MN=NB => vtDM = vtMN = vtNB ( cùng hướng, cùng độ lớn)


A B C D E M N F

a: vecto BM=vecto BA+vecto AM

=-vecto AB+1/2vecto AD

vecto AN=vecto AD+vecto DN

=vecto AD+1/2*vecto AB

b: vecto BM*vecto AN=vecto 0

=>BM vuông góc với AN

23 tháng 9 2021

ABCD là hbh => NCMA cũng là hình bình hành 

Áp dụng quy tắc hình bình hành => ↓NC + ↓MC = ↓CA ( cái này đễ cho dễ hiểu thì trước tiên gọi O là trung điểm của MN => quy tắc hình bình hành ↓NC + ↓MC = 2↓CO = ↓CA) 

↓AD + ↓NC = ↓AN + ↓ND + ↓NC = ↓AC + ↓ND = ↓AC + ↓MC = 2↓CI ( với I là trung điểm của AM)
↓AM + ↓CD = ↓AB + ↓BM + ↓CD = ↓BM

 

17 tháng 8 2019

Do ABCD  là hình bình hành nên:  AD = BC.

Lại có; M  và  N lần lượt là  trung điểm của BC; AD  nên :  AN = ND= BM = MC.