K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(AM=MB=\dfrac{AB}{2}\)

\(CN=ND=\dfrac{CD}{2}\)

mà AB=CD

nên AM=MB=CN=ND

Xét ΔMAP và ΔNCQ có 

MA=CN

\(\widehat{A}=\widehat{C}\)

AP=CQ

Do đó: ΔMAP=ΔNCQ

b: Ta có: BQ+CQ=BC

AP+DP=AD

mà BC=AD

và CQ=AP

nên BQ=DP

Xét ΔMBQ và ΔNDP có

MB=ND

\(\widehat{B}=\widehat{D}\)

BQ=DP

Do đó: ΔMBQ=ΔNDP

24 tháng 2 2020

( bạn tự vẽ hình nha )
a, Vì M nằm tren cạnh AB, N nằm trêm cạnh CD => AM \(//\) CN
Mà AM=CN ( Theo gt) . Do đó tứ giác AMCN là hình bình hành ( Theo đk 3)
b, Vì ABCD là hình bình hành => Góc A= Góc C
Xét 2 tam giác AMP và tam giác CNQ bằng nhau theo TH c-g-c ( Tự CM )
=> MP=NC( 2 cạnh tương ứng )(1)
CMTT 2 tam giác MBQ và NDP ta được MQ=PN (2)
Từ (1) và (2) ta có MPNQ là hình bình hành (đpcm)

20 tháng 11 2016

A B C D E F M P Q I K

a/ 

Vì ABCD là hình bình hành nên AB // CD => ABCD cũng là hình thang.

Ta có E và F lần lượt là trung điểm các cạnh AD và BC nên EF là đường trung bình 

của hình thang ABCD => EF // AB (1)

Lại có AE // BF (2) . Từ (1) và (2) suy ra ABFE là hình bình hành (dhnb)

b/ Xét tứ giác DEBC có \(\hept{\begin{cases}DE=BF\\DE\text{//}BF\end{cases}}\) => DEBF là hình bình hành => BE // DF

Xét tam giác BCP : \(\hept{\begin{cases}BF=FC\\FQ\text{//}BP\end{cases}}\) => QF là đường trung bình => CQ = QP (3)

Tương tự với tam giác ADQ : PE là đường trung bình => AP = PQ (4)

Từ (3) và (4) => AP = PQ = QC

c/ 

Ta có : \(\hept{\begin{cases}IE=EM\\AE=ED\end{cases}}\) => IAMD là hình bình hành => IA // DM hay IA // CD (5)

Tương tự : \(\hept{\begin{cases}BF=FC\\MF=FK\end{cases}}\) => BKCM là hình bình hành => BK // CD (6)

Lại có AB // CD (7)

Từ (5) , (6) , (7) kết hợp cùng với tiên đề Ơ-clit ta được đpcm.

d/  Vì IAMD và BKCM là các hình bình hành (chứng minh ở câu c) 

nên ta có AI = DM , BK = CM

=> AI + BK = DM + CM = CD (không đổi)

Vậy khi M di chuyển trên cạnh CD thì AI + BK không đổi.

20 tháng 11 2016

khó đấy bạn !

18 tháng 8 2021

Đường thẳng và mặt phẳng trong không gian, Quan hệ song songhọc tốt

18 tháng 8 2021

Đường thẳng và mặt phẳng trong không gian, Quan hệ song songHọc tốt

a: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

P là trung điểm của CD

N là trung điểm của BC

Do đó: PN là đường trung bình của ΔABD

Suy ra: PN//BD và \(PN=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//PN và MQ=PN

hay MNPQ là hình bình hành

10 tháng 10 2016

 Bài 1 :

a. AB//CD  (ABCD là hình bình hành)                                                                                                                                              M thuộc AB                                                                                                                                                                                  N thuộc CD                                                                                                                                                                              => BM // DN

Xét tứ giác AMCN có:

MB=DN (gt) 

BM// DN

=> tứ giác AMCN là hình bình hành

b. Gọi giao điểm của AC và BD là O

=> O là trung điểm của AC và BD (tính chất hình bình hành) 

 Hình bình hành MBND có

O là trung điểm của BD

MN là đường chéo hình bình hành MBND

O là trung điểm MM

=> MN đi qua O

=> AC,BD,MN đồng quy tại một điểm

c.

10 tháng 10 2016

Bài 2 :

a. AB = CD (ABCD là hình bình hành) 

Mà AB = BE (A đối xứng E qua B) 

=> CD=BE 

AB // CD (ABCD là hình bình hành) 

Mà E thuộc AC

=> CD//BE 

Xét tứ giác DBEC:

CD=BE (CM) 

CD//BE (CM) 

=> DBEC là hình bình hành

b.