K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2019

a/

gọi giao điểm cú phân giác góc D với AB là E

vì ABCD là hbh => \(\widehat{DAE}+\widehat{ADC}=180\)

MÀ \(\widehat{DAE}=120\)=> \(\widehat{ADC}=60\)

lại có DE là phân giác của \(\widehat{ADC}\)

=>  \(\widehat{ADE}=30\)

xét tam giác ADE có \(\widehat{ADE}+\widehat{AED}+\widehat{DAE}=180\)

                          <=> \(30+\widehat{AED}+120=180\)

                         <=>     \(\widehat{AED}=30\)  

MÀ \(\widehat{ADE}=30\)=> tam giác \(ADE\) cân tại A

                                  => AD=AE 

mà AB = 2AD => AB=2AE

                      => AE = 1/2 AB

                     => E là trung điểm của AB ( đpcm )

b/

vì ABCD là hbh => \(\widehat{ADC}=\widehat{ABC}=60\)

VÌ \(AD=BC,AB=2AD,AB=2EB\)

=> \(EB=BC\)

=> tam giác EBC cân tại B

=> \(\widehat{BEC}=\widehat{BCE}\) \(=\frac{180-60}{2}=60\)

VÌ \(\widehat{AEB}\) là góc tù => \(\widehat{AEB}=180\)

                                 => \(\widehat{AED}+\widehat{DEC}+\widehat{BEC}=180\)

                                 => \(30+\widehat{DEC}+60=180\)

                                => \(\widehat{DEC}=90\)

                                => \(DE\perp EC\) ( đpcm )

c/

vì AB // CD ( ABCD là hbh )

  => AE // CD => AECD là hình thang \(\left(1\right)\)

ta có \(\widehat{AEC}=\widehat{AED}+\widehat{DEC}=30+90=120\)

       \(\widehat{DAE}=120\left(gt\right)\)

=> \(\widehat{AEC}=\widehat{DAE}\left(=120\right)\left(2\right)\)

TỪ \(\left(1\right),\left(2\right)\)

=> AECD là hình thang cân

CHÚC BN HỌC TỐT

24 tháng 8 2019

  A B C D

Theo bài ra ta có tứ giác ANCD là hình thang cân
=> AD = BC
Mà AB = AD
=> AD = BC = AB
=> tam giác ABC có AB = Bc=> ABC là tam giác cân
=> góc BAC = góc BCA  (1)
Vì AB//CD => góc BAC = góc ACD  (2)
Từ (1) và (2)
=> góc BCA = góc ACD
=> AC là đường phân giác của góc C
=> đpcm

2) a) Kẻ BN vuông AD , BM vuông CD 

Xét tam giác vuông BNA và BMD ta có :

AB = BC ; góc BNA = \(180^o-\widehat{BAD}=70^o\)nên góc BAN = BCD = \(70^o\)

\(\Rightarrow\)tam giác BMD = tam giác BND ( cạnh huyền - góc nhọn )

\(\Rightarrow\)\(BN=BM\Rightarrow BD\)là tia phân giác của góc D

b) Nối B với D do AB = AD nên tam giác ABD cân tại A khi đó góc ADB = ( \(180^o-110^o\)) : 2= \(35^o\)

\(\Rightarrow\widehat{ADC}=70^o\)

do góc ADC + góc BAD = \(180^o\Rightarrow\)AB// CD

Và góc BCD = góc ADC= \(70^o\)

Suy ra ABC là hình thang cân

a) * Vì ABCD là hình bình hành(gt)

=> \(\widehat{A}=\widehat{C}\)\(\widehat{B}=\widehat{D};AD=BC;AB//CD\)tính chất)

_ Ta có AM là tia phân giác của GÓC A => \(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{A}}{2}\left(1\right)\)

_Ta có CN là tia phân giác của GÓC C =>\(\widehat{C_1}=\widehat{C_2}=\frac{\widehat{C}}{2}\left(2\right)\)

_ Từ (1) (2) => \(\widehat{A_1}=\widehat{C_2}\)

* Xét \(\Delta ADM\) và \(\Delta CBN\)có:

\(\widehat{A_1}=\widehat{C_2}\)cmt)

AD=BC( cmt)

GÓC B=GÓC D

=> \(\Delta ADM=\Delta CBN\left(g.c.g\right)\)

=>AM=CN (3) ( 2 cạnh tuiwng ứng)

\(\widehat{M_1}=\widehat{N_1}\) ( 2 góc tương ứng)

* Mà AB//CD( gt) 

\(N\in AB;M\in CD\left(gt\right)\)

=>BN//CM => \(\widehat{N_1}=\widehat{C_1}\)2 góc SLT)

=> \(\widehat{M_1}=\widehat{C_1}\)

Mà 2 góc này ở vị trí Đồng vị

=> AM//CN(4)

* Từ (3)(4) 

=> AMCN là hình bình hành

_ Cậu tự vẽ hình xong đặt chỉ số ạ_

_tham khảo bài àm trên đây ạ, chúc cậu học tốt '.'

22 tháng 10 2023

Bài 2:

AK=AB/2

CI=CD/2

mà AB=CD

nên AK=CI

Xét tứ giác AKCI có

AK//CI

AK=CI

Do đó: AKCI là hình bình hành

=>AC cắt KI tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,KI,BD đồng quy

Bài 1:

a: \(\widehat{ADE}=\widehat{EDF}=\dfrac{1}{2}\cdot\widehat{ADC}\)

\(\widehat{ABF}=\widehat{CBF}=\dfrac{1}{2}\cdot\widehat{ABC}\)

mà \(\widehat{ADC}=\widehat{ABC}\)

nên \(\widehat{ADE}=\widehat{EDF}=\widehat{ABF}=\widehat{CBF}\)

Xét ΔEAD và ΔFCB có

\(\widehat{A}=\widehat{C}\)

AD=CB

\(\widehat{EDA}=\widehat{FBC}\)

Do đó: ΔEAD=ΔFCB

=>\(\widehat{AED}=\widehat{CFB}\)

=>\(\widehat{EDF}=\widehat{CFB}\)

mà hai góc này đồng vị

nên DE//BF

b: Xét tứ giác DEBF có

DE//BF

BE//DF

Do đó: DEBF là hình bình hành

Bài 1: Tứ giác ABCD có AB=BC=CD và Góc D+B=180 độa, Chứng minh AC là phân giác góc Ab, Tứ giác ABCD là hình gì? tại sao?Bài 2: Cho hình thang ABCD (AB//CD). M là trung điểm của AD sao cho CM là phân giác góc C. Biết MB=6cm, MC=8cma, BC=?b, So sánh khoảng cách từ M đến BC và đường cao hình thang.Bài 3: Cho tứ giác ABCD, AC là phân giác góc A. Gọi I,K lần lượt là trung điểm của AD,BC. IK cắt AC tại S.a, Cmr: S là trung...
Đọc tiếp

Bài 1: Tứ giác ABCD có AB=BC=CD và Góc D+B=180 độ
a, Chứng minh AC là phân giác góc A
b, Tứ giác ABCD là hình gì? tại sao?
Bài 2: Cho hình thang ABCD (AB//CD). M là trung điểm của AD sao cho CM là phân giác góc C. Biết MB=6cm, MC=8cm
a, BC=?
b, So sánh khoảng cách từ M đến BC và đường cao hình thang.
Bài 3: Cho tứ giác ABCD, AC là phân giác góc A. Gọi I,K lần lượt là trung điểm của AD,BC. IK cắt AC tại S.
a, Cmr: S là trung điểm của AC
b, Từ C kẻ Cx//AD. Cx cắt AB tại M. Tứ giác ABCD là hình gì? tại sao?
Bài 4: Cho tứ giác ABCD gọi E,F lần lượt là trung điểm của BC và AD.
Cmr:
a,EF<(AB+CD)/2
b, Tứ giác ABCD<=>EF<(AB+CD)/2
Bài 5: Cho hình thang ABCD (AB//CD), AB<CD. AC cắt BD tại O. Biết gócDOC=60 độ
AD=6cm. P,Q,R lần lượt là trung điểm của OA,OD. Tính chu vi tam giác PQR
Bài 6: Cho tam giác ABC, D thuộc AB sao cho BD=1/4 AB, E là trung điểm vủa BC. Đường thẳng DE cắt AC tại F. Cmr: CF=1/2AC.
Các bạn xem làm giúp mình với nhé  mình sắp phải nộp rồi 

 
1

Bài 1: 

a: Xét tứ giác ABCD có góc B+góc D=180 độ

nên ABCD là tứ giác nội tiếp

=>góc BAC=góc BDC và góc DAC=góc DBC

mà góc CBD=góc CDB

nên góc BAC=góc DAC

hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC

=>góc BCA=góc CAD

=>BC//AD

=>ABCD là hình thang

mà góc B=góc BCD

nên ABCD là hình thang cân

Bài 3: 

Xét ΔCBD có CD=CB

nên ΔCBD cân tại C

Suy ra: \(\widehat{CDB}=\widehat{CBD}\)

mà \(\widehat{CDB}=\widehat{ADB}\)

nên \(\widehat{ADB}=\widehat{DBC}\)

mà hai góc này ở vị trí so le trong

nên AD//BC

hay ADCB là hình thang