K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-\left(m^2y+2y\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m^2y+2y=2m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y\left(m^2+2\right)=2m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{m\cdot\left(2m-1\right)}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2+4-2m^2+m}{m^2+2}=\dfrac{m+4}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

Tới đây bạn tự làm tiếp nhé

10 tháng 3 2022

a, \(\left\{{}\begin{matrix}m^2x-my=2m\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x=2m+1\\y=\dfrac{1-x}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{1-\dfrac{2m+1}{m^2+1}}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{\dfrac{m^2+1-2m-1}{m^2+1}}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{\dfrac{m^2-2m}{m^2+1}}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2}\\y=\dfrac{m^2-2m}{m^2+1}:m=\dfrac{m\left(m-2\right)}{m\left(m^2+1\right)}=\dfrac{m-2}{m^2+1}\end{matrix}\right.\)

b, Để hpt có nghiệm duy nhất khi \(\dfrac{m}{1}\ne-\dfrac{1}{m}\Leftrightarrow m^2\ne-1\left(luondung\right)\)

\(\dfrac{2m+1}{m^2}+\dfrac{m-2}{m^2+1}=-1\)

\(\Leftrightarrow\left(2m+1\right)\left(m^2+1\right)+m^2\left(m-2\right)=-m^2\left(m^2+1\right)\)

\(\Leftrightarrow2m^3+2m+m^2+1+m^3-2m^2=-m^4-m^2\)

\(\Leftrightarrow3m^3-m^2+2m+1=-m^4-m^2\)

\(\Leftrightarrow m^4+3m^3+2m+1=0\)

bạn tự giải nhé 

25 tháng 11 2021

\(\text{Với }m\ne-1\\ HPT\Leftrightarrow\left\{{}\begin{matrix}mx+y=m^2+3\\y=x+4\end{matrix}\right.\\ \Leftrightarrow mx+x+4=m^2+3\\ \Leftrightarrow x\left(m+1\right)=m^2-1\\ \Leftrightarrow x=\dfrac{\left(m-1\right)\left(m+1\right)}{m+1}=m-1\\ \Leftrightarrow y=x+4=m+3\)

\(\Leftrightarrow\left(x;y\right)=\left(m-1;m+3\right)\left(đpcm\right)\)

\(\Leftrightarrow Q=x^2-2y+10\\ \Leftrightarrow Q=\left(m-1\right)^2-2\left(m+3\right)+10\\ \Leftrightarrow Q=m^2-2m+1-2m-6+10\\ \Leftrightarrow Q=m^2-4m+5=\left(m-2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow m=2\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

Vậy \(Q_{min}=1\)

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Lời giải:
Từ PT$(1)\Rightarrow x=m+1-my$. Thay vô PT(2):

$m(m+1-my)+y=3m-1$

$\Leftrightarrow y(1-m^2)+m^2+m=3m-1$

$\Leftrightarrow y(1-m^2)=-m^2+2m-1(*)$

Để hpt có nghiệm $(x,y)$ duy nhất thì pt $(*)$ cũng phải có nghiệm $y$ duy nhất 

Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow m\neq \pm 1$
Khi đó: $y=\frac{-m^2+2m-1}{1-m^2}=\frac{-(m-1)^2}{-(m-1)(m+1)}=\frac{m-1}{m+1}$

$x=m+1-my=m+1-\frac{m(m-1)}{m+1}=\frac{3m+1}{m+1}$

Có:

$x+y=\frac{m-1}{m+1}+\frac{3m+1}{m+1}=\frac{4m}{m+1}<0$

$\Leftrightarrow -1< m< 0$

Kết hợp với đk $m\neq \pm 1$ suy ra $-1< m< 0$ thì thỏa đề.

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)

=>m<-1

31 tháng 1 2023

`a)` Thay `m=\sqrt{3}+1` vào hệ ptr có:

`{(\sqrt{3}x-2y=1),(3x+(\sqrt{3}+1)y=1):}`

`<=>{(3x-2\sqrt{3}y=\sqrt{3}),(3x+(\sqrt{3}+1)y=1):}`

`<=>{((3\sqrt{3}+1)y=1-\sqrt{3}),(\sqrt{3}x-2y=1):}`

`<=>{(y=[-5+2\sqrt{3}]/13),(\sqrt{3}x-2[-5+2\sqrt{3}]/13=1):}`

`<=>{(x=[4+\sqrt{3}]/13),(y=[-5+2\sqrt{3}]/13):}`

`b){((m-1)x-2y=1),(3x+my=1):}`

`<=>{(x=[1-my]/3),((m-1)[1-my]/3-2y=1):}`

`<=>{(x=[1-my]/3),(m-m^2y-1+my-6y=3):}`

`<=>{(x=[1-my]/3),((-m^2+m-6)y=4-m):}`

`<=>{(x=[1-my]/3),(y=[4-m]/[-m^2+m-6]):}`

   Mà `-m^2+m-6` luôn `ne 0`

   `=>AA m` thì đều tìm được `1` giá trị `y` từ đó tìm được `x`

 `=>AA m` thì hệ ptr có `1` nghiệm duy nhất

`c){((m-1)x-2y=1),(3x+my=1):}`

`<=>{(x=[1-my]/3),(y=[4-m]/[-m^2+m-6]):}`

`<=>{(x=(1-m[4-m]/[-m^2+m-6]):3),(y=[4-m]/[-m^2+m-6]):}`

`<=>{(x=[-m^2+m-6-4m+m^2]/[-3m^2+3m-18]),(y=[4-m]/[-m^2+m-6]):}`

`<=>{(x=[-3m-6]/[3(-m^2+m-6)]),(y=[4-m]/[-m^2+m-6]):}`

Ta có: `x-y=[-3m-6]/[3(-m^2+m-6)]-[4-m]/[-m^2+m-6]`

                `=[-3m-6-12+3m]/[-3(m^2-m+6)]`

                `=[-18]/[-3(m^2-m+6)]=6/[(m-1/2)^2+23/4]`

Vì `(m-1/2)^2+23/4 >= 23/4`

`<=>6/[(m-1/2)^2+23/4] <= 24/23`

Hay `x-y <= 24/23`

Dấu "`=`" xảy ra `<=>m-1/2=0<=>m=1/2`

NV
4 tháng 1 2021

a. Bạn tự giải

b. Thế cặp nghiệm x=-1, y=3 vào hệ ban đầu ta được:

\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3m=10\\-m=13\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

c. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=9m\\mx-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)y=9m-4\\mx-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{9m-4}{m^2+3}\\x=\dfrac{4m+27}{m^2+3}\end{matrix}\right.\)

Vậy với mọi m thì hệ luôn có nghiệm duy nhất như trên

20 tháng 1 2021

Hệ đẫ cho có nghiệm duy nhất khi \(m\ne-1\)

20 tháng 1 2021

\(\left\{{}\begin{matrix}x-y=1\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\m\left(1+y\right)+y=m\end{matrix}\right.\)  \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\m+my+y=m\end{matrix}\right.\)   \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\y\left(m+1\right)=0\end{matrix}\right.\) (*)

Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\) m + 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) -1

Khi đó: (*) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\y=\dfrac{0}{m+1}=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+0=1\\y=0\end{matrix}\right.\)

Vậy m \(\ne\) -1 thì hpt có nghiệm duy nhất \(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

Chúc bn học tốt!