Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hàm số y=(m-2)x+m+3 nghịch biến trên R thì m-2<0
=>m<2
b: Thay x=3 và y=0 vào y=(m-2)x+m+3, ta được:
\(3\left(m-2\right)+m+3=0\)
=>3m-6+m+3=0
=>4m-3=0
=>4m=3
=>\(m=\dfrac{3}{4}\)
c: Tọa độ giao điểm của hai đường thẳng y=-x+2 và y=2x-1 là:
\(\left\{{}\begin{matrix}2x-1=-x+2\\y=-x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=3\\y=-x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1+1=0\end{matrix}\right.\)
Thay x=1 và y=0 vào y=(m-2)x+m+3, ta được:
\(1\left(m-2\right)+m+3=0\)
=>m-2+m+3=0
=>2m+1=0
=>2m=-1
=>\(m=-\dfrac{1}{2}\)
a: Để hàm số nghịch biến trên R thì 2m-1<0
=>2m<1
=>\(m< \dfrac{1}{2}\)
b; Thay x=-1 và y=0 vào y=(2m-1)x+m-1, ta được:
\(\left(-1\right)\left(2m-1\right)+m-1=0\)
=>-2m+1+m-1=0
=>-m=0
=>m=0
c: Thay x=1 và y=4 vào y=(2m-1)x+m-1, ta được:
\(1\left(2m-1\right)+m-1=4\)
=>2m-1+m-1=4
=>3m=6
=>m=2
Khi m=2 thì \(y=\left(2\cdot2-1\right)x+2-1=3x+1\)
=>3x-y+1=0
Khoảng cách từ O(0;0) đến đường thẳng 3x-y+1=0 là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot3+0\cdot\left(-1\right)+1\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{1}{\sqrt{10}}\)
a: Để hàm số y=(2m-1)x+m-1 nghịch biến trên R thì 2m-1<0
=>2m<1
=>\(m< \dfrac{1}{2}\)
b: Thay x=-1 và y=0 vào y=(2m-1)x+m-1, ta được:
-(2m-1)+m-1=0
=>-2m+1+m-1=0
=>-m=0
=>m=0
c: Thay x=1 và y=4 vào y=(2m-1)x+m-1, ta được:
2m-1+m-1=4
=>3m-2=4
=>3m=6
=>m=2
Khi m=2 thì \(y=\left(2\cdot2-1\right)x+2-1=3x+1\)
vẽ đồ thị:
y=3x+1
=>3x-y+1=0
Khoảng cách từ O(0;0) đến đường thẳng 3x-y+1=0 là:
\(d\left(O;3x-y+1=0\right)=\dfrac{\left|0\cdot3+0\cdot\left(-1\right)+1\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{1}{\sqrt{10}}\)
Lời giải:
a. Để hs trên là hàm bậc nhất thì:
$4m2-4m+1\neq 0$
$\Leftrightarrow (2m-1)^2\neq 0$
$\Leftrightarrow 2m-1\neq 0$
$\Leftrightarrow m\neq \frac{1}{2}$
b.
$f(1)=(4m^2-4m+1).1-3=4m^2-4m-2=6$
$\Leftrightarrow 4m^2-4m-8=0$
$\Leftrightarrow m^2-m-2=0$
$\Leftrightarrow (m+1)(m-2)=0$
$\Leftrightarrow m=-1$ hoặc $m=2$
Sửa đề: \(y=mx^2+x\left(m-1\right)+2\)
Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m=0\\m-1\ne0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=0\\m\ne1\end{matrix}\right.\)
=>m=0
a: Thay x=-1 và y=-2 vào y=(m-1)x+2m, ta được:
\(-\left(m-1\right)+2m=-2\)
=>2m-m+1=-2
=>m+1=-2
=>m=-3
b: Khi m=-1 thì \(y=\left(-1-1\right)x+2\cdot\left(-1\right)=-2x-2\)
a: Thay x=1 và y=4 vào y=mx+1, ta được:
\(m\cdot1+1=4\)
=>m+1=4
=>m=3
b: Để hai đường thẳng này song song với nhau thì
\(\left\{{}\begin{matrix}m^2=m\\m\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2-m=0\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne1\end{matrix}\right.\)
=>m=0
a: Để hàm số (1) là hàm số bậc nhất thì \(m^2+m-2< >0\)
=>\(m^2+2m-m-2< >0\)
=>\(\left(m+2\right)\left(m-1\right)< >0\)
=>\(\left\{{}\begin{matrix}m+2< >0\\m-1< >0\end{matrix}\right.\Leftrightarrow m\notin\left\{-2;1\right\}\)
Để hàm số nghịch biến thì (m+2)(m-1)<0
TH1: \(\left\{{}\begin{matrix}m+2>0\\m-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>-2\\m< 1\end{matrix}\right.\)
=>-2<m<1
TH2: \(\left\{{}\begin{matrix}m+2< 0\\m-1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\)
=>Loại
b: Để hàm số (1) là hàm hằng thì \(m^2+m-2=0\)
=>(m+2)(m-1)=0
=>\(\left[{}\begin{matrix}m+2=0\\m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)