Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt hoành độ giao điểm của đồ thị hàm số (C) với đường thẳng d là:
\(\dfrac{x-1}{x+1}=m-x\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\g\left(x\right)=x^2+\left(2-m\right)x-m-1=0\left(1\right)\end{matrix}\right.\)
Đồ thị (C) cắt đường thẳng d tại 2 điểm phân biệt <=> pt(1) có 2 nghiệm phân biệt khác -1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\g\left(-1\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+8>0\\-2\ne0\end{matrix}\right.\)
Khi đó: \(x_A,x_B\) là nghiệm của pt (1). Vì tiếp tuyến tại A và B //
\(\Rightarrow f'\left(x_A\right)=f'\left(x_B\right)\Leftrightarrow\dfrac{2}{\left(x_A+1\right)^2}=\dfrac{2}{\left(x_B+1\right)^2}\Leftrightarrow\left[{}\begin{matrix}x_A=x_B\left(loai\right)\\x_A+x_B=-2\end{matrix}\right.\)
Theo định lí Viet ta có:
\(x_A+x_B=m-2\Rightarrow m-2=-2\Leftrightarrow m=0\)
Gọi \(A_1\) và \(A_2\) lần lượt là điểm đối xứng A qua \(d_1\) và \(d_2\Rightarrow\left\{{}\begin{matrix}A_1\left(4;3\right)\\A_2\left(\frac{7}{5};\frac{24}{5}\right)\end{matrix}\right.\)
Với B bất kì thuộc d1 và C bất kì thuộc d2, ta luôn có \(\left\{{}\begin{matrix}AB=A_1B\\AC=A_2C\end{matrix}\right.\)
\(\Rightarrow T=AB+BC+AC=A_1B+BC+CA_2\ge A_1A_2\)
\(\Rightarrow T_{min}=A_1A_2\) khi \(A_1;B;C;A_2\) thẳng hàng hay B, C lần lượt là giao điểm của đường thẳng \(A_1A_2\) và d1; d2
\(\overrightarrow{A_1A_2}=\left(-\frac{13}{5};\frac{9}{5}\right)\Rightarrow A_1A_2\) có 1 vtpt là \(\left(9;13\right)\)
Phương trình A1A2:
\(9\left(x-4\right)+13\left(y-3\right)=0\Leftrightarrow9x+13y-75=0\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}y=x\\9x+13y-75=0\end{matrix}\right.\)
Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}y=2x\\9x+13y-75=0\end{matrix}\right.\)
\(y'=\dfrac{-3}{\left(x-1\right)^2}\)
Gọi tiếp điểm có hoành độ \(x_0\)
Phương trình tiếp tuyến: \(y=\dfrac{-3}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{2x_0+1}{x_0-1}\) (1)
a.
Tọa độ A và B có dạng: \(A\left(\dfrac{2x_0^2+2x_0-1}{3};0\right)\) ; \(B\left(0;\dfrac{2x_0^2+2x_0-1}{\left(x_0-1\right)^2}\right)\)
\(\Rightarrow OA=\left|\dfrac{2x_0^2+2x_0-1}{3}\right|;OB=\dfrac{\left|2x_0^2+2x_0-1\right|}{\left(x_0-1\right)^2}\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{6}\Rightarrow OA.OB=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{\left(2x_0^2+2x_0-1\right)^2}{3\left(x_0-1\right)^2}=\dfrac{1}{3}\Rightarrow\left(2x_0^2+2x_0-1\right)^2=\left(x_0-1\right)^2\)
\(\Leftrightarrow\left(2x_0^2+3x_0-2\right)\left(2x_0^2+x_0\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=-\dfrac{1}{2}\\x_0=-2\\x_0=\dfrac{1}{2}\end{matrix}\right.\)
Có 4 tiếp tuyến thỏa mãn:... (thế lần lượt các giá trị \(x_0\) vào (1) là được)