K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

+ Trước tiên từ đồ thị hàm số y= f( x) , ta suy ra đồ thị hàm số y = |f(x)| như hình dưới đây: 

Phương trình 2|f(x)| - m = 0 hay  |f(x)| =  m/2 là phương trình hoành độ giao điểm của đồ thị hàm số y = |f(x) và đường thẳng y= m/2.

Dựa vào đồ thị hàm số  y = |f(x)|, ta có ycbt trở thành:

Chọn A.

12 tháng 5 2017

Đáp án D

Phương pháp:

Số nghiệm của phương trình |f(x)| = m bằng số giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m

Cách giải:

Từ đồ thị hàm số y = f(x) ta có đồ thị hàm số y = |f(x)| như hình bên:

 

Số nghiệm của phương trình |f(x)| = m bằng số giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m

⇒ Để phương trình |f(x)| = m có 4 nghiệm phân biệt thì 1 < m < 3

6 tháng 3 2019

Chọn B

6 tháng 1 2018

Chọn A

27 tháng 2 2019

2 tháng 4 2019

Chọn D.

Số nghiệm của phương trình f(x) =  m bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m.

Dựa vào đồ thị, điều kiện để phương trình có 4 nghiệm phân biệt là -4 < m < 0.

31 tháng 5 2018

Chọn D

Phương pháp:

Biến đổi phương trình về f(x) = 2018 - m và sử dụng tương giao đồ thị: Phương trình có duy nhất một nghiệm khi và chỉ khi đường thẳng y = 2018 - m cắt đồ thị hàm số y = f(x) tại duy nhất một điểm.

Cách giải:

Phương trình f(x) + m - 2018 = 0 

 

Đây là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = 2018 - m (có phương song song hoặc trùng với trục hoành).

Dựa vào đồ thị, ta có ycbt 

25 tháng 11 2017

20 tháng 6 2017

Chọn D