Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t =f(x) ta có f[f(x)]=1→f(t)=1
Dựa vào sự tương giao của đồ thị hàm số y=f(x) và đường thẳng y=1 ta thấy phương trình f(t)=1 có 3 nghiệm t =a ϵ (0 ;2),t =c ϵ(2 ;+∞) Dựa vào đồ thị ta lại có:
Phương trình t =a→f(x) =a và phương trình t =f(x) =b có 3 nghiệm phâ biệt.
Phương trình f =f(x) =c có một nghiệm duy nhất.
Vậy phương trình đã cho có 7 nghiệm .
Chọn đáp án B.
Đáp án C
Ta có f ' x = 0 ⇔ x = 1 ; 2 ; 3 ⇒ hàm số có 3 điểm cực trị
Lại có g x = f x - m - 2018 ⇒ g ' x = f ' x = 0 ⇒ có 3 nghiệm phân biệt
Suy ra phương trình f x = m + 2018 có nhiều nhất 4 nghiệm
Xét y = f x + 1 ⇒ y ' = f ' x + 1 < 0 ⇔ [ x + 1 ∈ 1 ; 2 x + 1 ∈ 3 ; + ∞ ⇔ [ 0 < x < 1 x > 2
Suy ra hàm số y = f(x + 1) nghịch biến trên khoảng (0;1).
Trên 1 ; + ∞ , f ' ( x ) > 0 ⇒ Hàm số f(x) đồng biến trên 1 ; + ∞
Chọn đáp án A.
Đáp án B
Phương pháp: Từ đồ thị hàm số y = f’(x) lập BBT của đồ thị hàm số y = f(x) và kết luận.
Cách giải: Ta có
BBT:
Từ BBT ta thấy (I) đúng, (II) sai.
Với => Hàm số y = f(x+1) nghịch biến trên khoảng (0;1).
=>(III) đúng.
Vậy có hai khẳng định đúng
Đáp án là B.
Từ đồ thị của hàm số y , = f ( x ) ta có bảng biến thiên của hàm số y = f ( x ) như hình vẽ:
Từ bảng biến thiên ta có: M = m a x { f ( - 1 ) ; f ( 1 ) ; f ( 2 ) }
Chọn C