K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2019

23 tháng 1 2017

Đáp án là B

21 tháng 5 2018

Đặt t =f(x) ta có f[f(x)]=1→f(t)=1

Dựa vào sự tương giao của đồ thị hàm số y=f(x) và đường thẳng y=1 ta thấy phương trình f(t)=1 có 3 nghiệm t =a ϵ (0 ;2),t =c ϵ(2 ;+∞) Dựa vào đồ thị ta lại có:

Phương trình t =a→f(x) =a và phương trình t =f(x) =b có 3 nghiệm phâ biệt.

Phương trình f =f(x) =c có một nghiệm duy nhất.

Vậy phương trình đã cho có 7 nghiệm .

Chọn đáp án B.

19 tháng 5 2018

Đáp án C

Ta có f ' x = 0 ⇔ x = 1 ; 2 ; 3 ⇒  hàm số có 3 điểm cực trị

Lại có g x = f x - m - 2018 ⇒ g ' x = f ' x = 0 ⇒  có 3 nghiệm phân biệt

Suy ra phương trình f x = m + 2018  có nhiều nhất 4 nghiệm

Xét  y = f x + 1 ⇒ y ' = f ' x + 1 < 0 ⇔ [ x + 1 ∈ 1 ; 2 x + 1 ∈ 3 ; + ∞ ⇔ [ 0 < x < 1 x > 2

Suy ra hàm số y = f(x + 1) nghịch biến trên khoảng (0;1).

29 tháng 12 2017

Trên 1 ; + ∞ , f ' ( x ) > 0 ⇒  Hàm số f(x) đồng biến trên  1 ; + ∞

Chọn đáp án A.

4 tháng 11 2017

Đáp án A

10 tháng 11 2017

18 tháng 9 2017

Đáp án B

Phương pháp: Từ đồ thị hàm số y = f’(x) lập BBT của đồ thị hàm số y = f(x) và kết luận.

Cách giải: Ta có 

BBT:

Từ BBT ta thấy (I) đúng, (II) sai.

Với  => Hàm số y = f(x+1) nghịch biến trên khoảng (0;1).

=>(III) đúng.

Vậy có hai khẳng định đúng

26 tháng 9 2017

Đáp án là  B.

Từ đồ thị của hàm số y , = f ( x )  ta có bảng biến thiên của hàm số y = f ( x )  như hình vẽ:

Từ bảng biến thiên ta có:  M = m a x { f ( - 1 ) ; f ( 1 ) ; f ( 2 ) }