Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t =f(x) ta có f[f(x)]=1→f(t)=1
Dựa vào sự tương giao của đồ thị hàm số y=f(x) và đường thẳng y=1 ta thấy phương trình f(t)=1 có 3 nghiệm t =a ϵ (0 ;2),t =c ϵ(2 ;+∞) Dựa vào đồ thị ta lại có:
Phương trình t =a→f(x) =a và phương trình t =f(x) =b có 3 nghiệm phâ biệt.
Phương trình f =f(x) =c có một nghiệm duy nhất.
Vậy phương trình đã cho có 7 nghiệm .
Chọn đáp án B.
Đáp án C
Ta có f ' x = 0 ⇔ x = 1 ; 2 ; 3 ⇒ hàm số có 3 điểm cực trị
Lại có g x = f x - m - 2018 ⇒ g ' x = f ' x = 0 ⇒ có 3 nghiệm phân biệt
Suy ra phương trình f x = m + 2018 có nhiều nhất 4 nghiệm
Xét y = f x + 1 ⇒ y ' = f ' x + 1 < 0 ⇔ [ x + 1 ∈ 1 ; 2 x + 1 ∈ 3 ; + ∞ ⇔ [ 0 < x < 1 x > 2
Suy ra hàm số y = f(x + 1) nghịch biến trên khoảng (0;1).
Trên 1 ; + ∞ , f ' ( x ) > 0 ⇒ Hàm số f(x) đồng biến trên 1 ; + ∞
Chọn đáp án A.
Có
Phương trình này có hai nghiệm
• Với ta cần tìm điều kiện để phương trình này có 4 nghiệm phân biệt thuộc
Với t = -1 phương trình (1) cho đúng một nghiệm x = π ; với t = 0 phương trình cho hai nghiệm
Với mỗi phương trình cho hai nghiệm thuộc
Vậy điều kiện cần tìm là phương trình (1) phải có hai nghiệm phân biệt
Chọn B.
Đáp án là B