K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

Chọn C

21 tháng 5 2018

Đặt t =f(x) ta có f[f(x)]=1→f(t)=1

Dựa vào sự tương giao của đồ thị hàm số y=f(x) và đường thẳng y=1 ta thấy phương trình f(t)=1 có 3 nghiệm t =a ϵ (0 ;2),t =c ϵ(2 ;+∞) Dựa vào đồ thị ta lại có:

Phương trình t =a→f(x) =a và phương trình t =f(x) =b có 3 nghiệm phâ biệt.

Phương trình f =f(x) =c có một nghiệm duy nhất.

Vậy phương trình đã cho có 7 nghiệm .

Chọn đáp án B.

3 tháng 10 2019

19 tháng 5 2018

Đáp án C

Ta có f ' x = 0 ⇔ x = 1 ; 2 ; 3 ⇒  hàm số có 3 điểm cực trị

Lại có g x = f x - m - 2018 ⇒ g ' x = f ' x = 0 ⇒  có 3 nghiệm phân biệt

Suy ra phương trình f x = m + 2018  có nhiều nhất 4 nghiệm

Xét  y = f x + 1 ⇒ y ' = f ' x + 1 < 0 ⇔ [ x + 1 ∈ 1 ; 2 x + 1 ∈ 3 ; + ∞ ⇔ [ 0 < x < 1 x > 2

Suy ra hàm số y = f(x + 1) nghịch biến trên khoảng (0;1).

29 tháng 12 2017

Trên 1 ; + ∞ , f ' ( x ) > 0 ⇒  Hàm số f(x) đồng biến trên  1 ; + ∞

Chọn đáp án A.

10 tháng 11 2017

4 tháng 11 2017

Đáp án A

18 tháng 6 2017

Có 

Phương trình này có hai nghiệm 

• Với  ta cần tìm điều kiện để phương trình này có 4 nghiệm phân biệt thuộc 

Với t = -1 phương trình (1) cho đúng một nghiệm x =  π ; với t = 0 phương trình cho hai nghiệm 

Với mỗi  phương trình cho hai nghiệm thuộc

Vậy điều kiện cần tìm là phương trình (1) phải có hai nghiệm phân biệt 

Chọn B. 

7 tháng 1 2017

Chọn D.