Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Hàm là hàm số bậc nhất khi:
\(2m-1\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)
b.
Hàm đồng biến trên R khi:
\(2m-1>0\Leftrightarrow m>\dfrac{1}{2}\)
a) Để hàm số là hàm số bậc nhất thì \(2m-1\ne0\)
hay \(m\ne\dfrac{1}{2}\)
b) Để hàm số đồng biến thì 2m-1>0
hay \(m>\dfrac{1}{2}\)
1:
a: m^2+1>=1>0 với mọi m
=>y=(m^2+1)x-5 luôn là hàm số bậc nhất
b: Do m^2+1>0 với mọi m
nên hàm số y=(m^2+1)x-5 đồng biến trên R
a) Hàm số: \(y=\sqrt{\dfrac{-1}{4m-2}}x+\dfrac{1}{7}\)
Là hàm số bậc nhất khi:
\(\dfrac{-1}{4m-2}>0\)
\(\Leftrightarrow4m-2< 0\)
\(\Leftrightarrow4m< 2\)
\(\Leftrightarrow m< \dfrac{4}{2}\)
\(\Leftrightarrow m< \dfrac{1}{2}\)
b) Ta có:
\(\sqrt{\dfrac{-1}{4m-2}}>0\forall m\ge\dfrac{1}{2}\)
Nên hệ số góc dương nên đây là hàm số bậc nhất đồng biến
a: Để hàm số trên là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m\ge0\\m\ne4\end{matrix}\right.\)
b: Để hàm số đồng biến thì \(\sqrt{m}-2>0\)
hay m>4
) Điều kiện để hàm số xác định là m≥0m≥0; x∈Rx∈R
Để hàm số đã cho là hàm bậc nhất thì m√+3√m√+5√≠0m+3m+5≠0
Vì m−−√+3–√≥0+3–√>0m+3≥0+3>0 với mọi m≥0m≥0 nên m−−√+3–√≠0,∀m≥0m+3≠0,∀m≥0
⇒m√+3√m√+5√≠0⇒m+3m+5≠0 với mọi m≥0m≥0
Vậy hàm số là hàm bậc nhất với mọi m≥0m≥0
b)
Để hàm đã cho nghịch biến thì m√+3√m√+5√<0m+3m+5<0
Điều này hoàn toàn vô lý do {m−−√+3–√≥3–√>0m−−√+5–√≥5–√>0{m+3≥3>0m+5≥5>0
Vậy không tồn tại mm để hàm số đã cho nghịch biến trên R
Giải thích các bước giải:
Lời giải:
Để hàm số là hàm bậc nhất thì $1-m^2\neq 0$
$\Leftrightarrow m^2\neq 1\Leftrightarrow m\neq \pm 1$
b.
Để hàm nghịch biến thì $1-m^2<0$
$\Leftrightarrow (1-m)(1+m)<0$
$\Leftrightarrow m> 1$ hoặc $m< -1$
Để hàm đồng biến thì $1-m^2>0$
$\Leftrightarrow (1-m)(1+m)>0$
$\Leftrightarrow -1< m< 1$
a) Hàm số đồng biến trên R\(\Rightarrow a>0\Rightarrow m-2>0\Rightarrow m>2\)
b) Hàm số nghịch biến trên R
\(\Leftrightarrow a< 0\Rightarrow m-2< 0\Rightarrow m< 2\)
a) Ta có \(y=mx+m-2x=\left(m-2\right)x+m\)
Như vậy để y là hàm số bậc nhất thì \(m-2\ne0\Leftrightarrow m\ne2\)
b) Để y là hàm số nghịch biến thì \(m-2< 0\Leftrightarrow m< 2\)
c) Để y là hàm số đồng biến thì \(m-2>0\Leftrightarrow m>2\)
a) Để hàm số đã cho là hàm bậc nhất thì m−2≠0⇔m≠2m−2≠0⇔m≠2
b) Để hàm số đã cho đồng biến trên tập xác định thì :
m−2>0⇔m>2m−2>0⇔m>2
c) Để hàm số đã cho nghịch biến trên tập xác định thì:
m−2<0⇔m<2
a) Để hàm số là hàm số bậc nhất thì \(2-m\ne0\)
\(\Leftrightarrow m\ne2\)
b) Để hàm số đồng biến thì 2-m>0
hay m<2
c) Để hàm số nghịch biến thì 2-m<0
hay m>2