K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để A là tập con của B thì m-1>=-2 và 4<=2m+2 và m-1<=4 và 2m+2>=-2

=>m>=-1 và 2m+2>=4 và m<=3 và m>=-2

=>m>=-1 và m>=1 và -2<=m<=3

=>m>=1 và -2<=m<=3

=>-2<=m<=1

7 tháng 9 2019

Bàu này quá dễ cái này lớp 6 còn còn có trong chương trình :)

Cho hai tập khác rỗng : A = (m – 1; 4], B = (-2; 2m + 2), với m ∈ Rℝ. Giá trị m để A  ∩ B ⊂ (-1; 3) là:

Điều kiện để tồn tại tập hợp A, B là

{m−1<4−2<2m+2⇔{m<5m>−2⇔−2<m<5A∩B⊂(−1;3)⇔{m−1≥−12m+2≤3⇔{m≥0m≤12⇔0≤m≤12m-1<4-2<2m+2⇔m<5m>-2⇔-2<m<5A∩B⊂(-1;3)⇔m-1≥-12m+2≤3⇔m≥0m≤12⇔0≤m≤12

Kết hợp với điều kiện (*) ta có 0 ≤ m ≤ 1/2 là giá trị cần tìm.

Cách này là tôi tự làm trong 1 lần ở Viet Jack kiểu tham khảo chứ kcoppy mạng :)

>3.....@Chi

Điều kiện để tn tại tập hợp A, B 

\(\hept{\begin{cases}m-1>4\\-2< 2m+2\end{cases}}\Rightarrow\hept{\begin{cases}m< 5\\m>-2\end{cases}}\Leftrightarrow-2< m< 5\)

A ∩ B ⊂ (-1; 3) \(\Leftrightarrow\hept{\begin{cases}m-1\ge-1\\2m+2\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ge0\\m\le\frac{1}{2}\end{cases}}\Leftrightarrow0\le m\le\frac{1}{2}\)

m-1<4-2<2m+2⇔m<5m>-2⇔-2<m<5A∩B⊂(-1;3)⇔m-1≥-12m+2≤3⇔m≥0m≤12⇔0≤m≤12

Kết hợp với điều kiện (*) ta có 0 ≤ m ≤ 1/2 là giá trị cần tìm.

28 tháng 4 2019

Đáp án A

20 tháng 5 2017

Đáp án: D

Điều kiện để tn tại tập hợp A, B

m - 1 < 4 - 2 < 2 m + 2 ⇔ m < 5 m > - 2 ⇔ - 2 < m < 5 A ∩ B ⊂ ( - 1 ; 3 ) ⇔ m - 1 ≥ - 1 2 m + 2 ≤ 3 ⇔ m ≥ 0 m ≤ 1 2 ⇔ 0 ≤ m ≤ 1 2

Kết hợp với điều kiện (*) ta 0 ≤ m ≤ 1/2 là giá trị cần tìm.

4 tháng 10 2019

1. \(A\cap B\ne\varnothing\\ \Rightarrow\left\{{}\begin{matrix}m+2\ge2m\\m\le2m+3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m\le2\\m\ge-3\end{matrix}\right.\Rightarrow-3\le m\le2\)

2. A là đoạn có độ dài bằng 5 thì:

\(\left|8-m-m\right|=5\\ \Leftrightarrow\left|8-2m=5\right|\\ \Rightarrow\left\{{}\begin{matrix}8-2m=5\\2m-8=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=\frac{3}{2}\\m=\frac{11}{2}\end{matrix}\right.\)

3.\(A\cap B=A\Rightarrow\left\{{}\begin{matrix}m\ge-1\\m+5\le3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m\ge-1\\m\le-2\end{matrix}\right.\)

16 tháng 12 2017

Đáp án C