K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

Đáp án B.

Ta có  4 = 2 x + 2 y ≥ 2 2 x . 2 y = 2 2 x + y

⇔ 4 ≥ 2 x + y ⇔ x + y ≤ 2 .

Suy ra  x y ≤ x + y 2 2 = 1

Khi đó

P = 2 x 3 + y 3 + 4 x 2 y 2 + 10 x y 2 x + y x + y 2 - 3 x y + 2 x y 2 + 10 x y

≤ 4 4 - 3 x y + 4 x 2 y 2 + 10 x y

= 16 + 2 x 2 y 2 + 2 x y x y - 1 ≤ 18

Vậy Pmax = 18 khi x = y = 1.

1 tháng 4 2018

NV
5 tháng 1 2021

\(4=2^x+2^y\ge2\sqrt{2^{x+y}}\Rightarrow2^{x+y}\le4\Rightarrow x+y\le2\)

\(\Rightarrow xy\le1\)

\(P=4x^2y^2+2x^3+2y^3+10xy\)

\(P=4x^2y^2+10xy+2\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)

\(P\le4x^2y^2+10xy+4\left(4-3xy\right)=4x^2y^2-2xy+16\)

Đặt \(xy=t\Rightarrow0< t\le1\)

Xét hàm \(f\left(t\right)=4t^2-2t+16\) trên \((0;1]\)

\(\Rightarrow...\)

NV
18 tháng 4 2020

\(4=2^x+2^y\ge2\sqrt{2^{x+y}}=2.2^{\frac{x+y}{2}}\)

\(\Rightarrow\frac{x+y}{2}\le1\Rightarrow x+y\le2\Rightarrow xy\le1\)

\(P=4x^2y^2+2x^3+2y^3+10xy\)

\(P=4x^2y^2+10xy+2\left(x+y\right)^3-6xy\left(x+y\right)\)

\(P=4x^2y^2-2xy+16=2\left(xy-1\right)\left(2xy+1\right)+18\)

Do \(xy\le1\Rightarrow2\left(xy-1\right)\left(2xy+1\right)\le0\Rightarrow P\le18\)

\(\Rightarrow P_{max}=18\) khi \(x=y=1\)

14 tháng 4 2019

17 tháng 6 2017

16 tháng 6 2019

Đáp án C.

Ta có

Khi đó, giả thiết trở thành:

log 3 x + y x 2 + y 2 + x y + 2 = x 2 + y 2 + x y + 2 - 3 x + y - 2

⇔ log 3 x + y - log 3 x 2 + y 2 + x y + 2 = x 2 + y 2 + x y + 2 - 3 x + y - 2

⇔ 3 x + y + log 3 3 x + y = x 2 + y 2 + x y + 2 + log 3 x 2 + y 2 + x y + 2

Xét hàm số  f t = t + log 3   t  trên khoảng  0 ; + ∞ , có  f ' t = 1 + 1 t   ln 3 > 0 ; ∀ t > 0 .

Suy ra f(t) là hàm số đồng biến trên 0 ; + ∞  mà f[3(x + y)] = f(x2 + y2 + xy + 2)

19 tháng 11 2019

Chọn B.

22 tháng 2 2018

9 tháng 12 2017

Chọn C.