Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Vì (d1)//(d3) nên a=1
hay (d1): y=x+b
Thay x=2 và y=3 vào (d1), ta được:
b+2=3
hay b=1
Để (d1) cắt (d2) tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}m-2\ne-2\\m^2+5m+6=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne0\\m^2+5m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\left(m+5\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne0\\\left[{}\begin{matrix}m=0\\m+5=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m+5=0\)
=>m=-5
1: \(O_2D=O_2A+CD=\dfrac{AC}{2}+\dfrac{BC}{2}=\dfrac{AB}{2}=R_1\)
góc O2MD=góc O2MC+góc CMD
=1/2*sđ cung CM+góc MCA
=90 độ
=>DM là tiếp tuyến của (O2)
PD^2=BD*DA=DC*BA=DM^2=O2D-R2^2
=>PD^2=R1^2-R2^2
2: Xet ΔD1BD vuông tại D1 và ΔD4BD vuông tại D4 có
BD chung
góc D1BD=góc D4BD
=>ΔD1BD=ΔD4BD
=>D1=D4
CM tương tự, ta được: DD2=DD3, BP=BQ, PA=PB
=>D1D+D2D+D3D+D4D<=1/2(BP+PA+AQ+QB)
=>2*(D1D+D2D)<=PA+PB
PB^2=BD^2+DP^2>=2*DB*DP
=>\(PB>=\dfrac{2\cdot DB\cdot DP}{PB}=2\cdot D_1D\)
Chứng minh tương tự,ta được: \(AP>=\dfrac{2\cdot DA\cdot DP}{PA}=2\cdot D_2D\)
=>ĐPCM
a, Bạn tự vẽ
b, PT hoành độ giao điểm (d1) và (d3) là
\(x=-x+3\Leftrightarrow x=\dfrac{3}{2}\Leftrightarrow y=\dfrac{3}{2}\Leftrightarrow A\left(\dfrac{3}{2};\dfrac{3}{2}\right)\Leftrightarrow OA=\sqrt{\left(\dfrac{3}{2}-0\right)^2+\left(\dfrac{3}{2}-0\right)^2}=\dfrac{3\sqrt{2}}{2}\)
PT hoành độ giao điểm (d2) và (d3) là
\(2x=-x+3\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow B\left(1;2\right)\Leftrightarrow OB=\sqrt{\left(1-0\right)^2+\left(2-0\right)^2}=\sqrt{5}\)
Ta có \(AB=\sqrt{\left(\dfrac{3}{2}-1\right)^2+\left(\dfrac{3}{2}-2\right)^2}=\sqrt{\dfrac{1}{4}+\dfrac{1}{4}}=\dfrac{\sqrt{2}}{2}\)
Ta có \(OA^2+AB^2=\dfrac{9}{2}+\dfrac{1}{2}=\dfrac{10}{2}=5=OB^2\) nên tg OAB vuông tại A
Do đó \(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot AB=\dfrac{1}{2}\cdot\dfrac{3\sqrt{2}}{2}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{3}{4}\left(đvdt\right)\)
a: Để hai đường song song thì 3m^2+1=4m và m^2-9<>-m-5
=>(m-1)(3m-1)=0 và m^2+m-4<>0
=>m=1 hoặc m=1/3
b: Để hai đường cắt nhau thì 3m^2+1<>4m
=>m<>1 và m<>1/3
Khi m=2 thì (d1): \(y=8x-7\)
(d2): y=13x-5
Toa độ giao điểm là:
8x-7=13x-5 và y=8x-7
=>-5x=-5+7=2 và y=8x-7
=>x=-2/5 và y=-16/5-7=-16/5-35/5=-51/5
a: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m^2-2=2\\m-1\ne-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=4\\m\ne-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\ne-2\end{matrix}\right.\)
=>m=2
b: Để (d) trùng với (d2) thì
\(\left\{{}\begin{matrix}m^2-2=-1\\m-1=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=1\\m=-1\end{matrix}\right.\)
=>m=-1
c:
Để (d) cắt (d3) thì \(m^2-2\ne3\)
=>\(m^2\ne5\)
=>\(m\ne\pm\sqrt{5}\)
Thay x=-1 vào y=3x-2, ta được:
\(y=3\left(-1\right)-2=-5\)
Thay x=-1 và y=-5 vào (d), ta được:
\(-\left(m^2-2\right)+m-1=-5\)
=>\(-m^2+2+m-1+5=0\)
=>\(-m^2+m+6=0\)
=>\(m^2-m-6=0\)
=>(m-3)(m+2)=0
=>\(\left[{}\begin{matrix}m-3=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\left(nhận\right)\\m=-2\left(nhận\right)\end{matrix}\right.\)
d: Để (d) vuông góc với (d4) thì \(\dfrac{4}{5}\left(m^2-2\right)=-1\)
=>\(m^2-2=-1:\dfrac{4}{5}=-\dfrac{5}{4}\)
=>\(m^2=\dfrac{3}{4}\)
=>\(m=\pm\dfrac{\sqrt{3}}{2}\)
a: (d1); y=4mx-(m+5)
=m(4x-1)-5
Điểm mà (d1) luôn đi qua có tọa độ là:
4x-1=0 và y=-5
=>x=1/4 và y=-5
(d2): \(y=\left(3m^2+1\right)x+m^2-4\)
=3m^2x+3x+m^2-4
=m^2(3x+1)+3x-4
ĐIểm mà (d2) luôn đi qua có tọa độ là:
3x+1=0 và y=3x-4
=>x=-1/3 và y=-1-4=-5
b: A(1/4;-5); B(-1/3;-5)
\(AB=\sqrt{\left(-\dfrac{1}{3}-\dfrac{1}{4}\right)^2+\left(-5+5\right)^2}=\dfrac{7}{12}\)
c: Để hai đường song song thì
\(\left\{{}\begin{matrix}3m^2+1=4m\\m^2-4+m+5< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(3m-1\right)=0\\m^2+m+1< >0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{3}\end{matrix}\right.\)
a: Để hai đường song song thì
\(\left\{{}\begin{matrix}2m^2-m=1\\m^2+m< >2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(2m+1\right)=0\\\left(m+2\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)
b: Thay x=2 vào (d1), ta đc:
\(y=2+2=4\)
Vì (d3) vuông góc với (d1) nên (d3): y=-x+b
Thay x=2 và y=4 vào (d3), ta được:
b-2=4
=>b=6