Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A\) và \(B\) là hai biến cố độc lập \( \Rightarrow P\left( {AB} \right) = P\left( A \right)P\left( B \right) \Rightarrow P\left( B \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{2}{3}\)
\( \Rightarrow P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{23}}{{30}}\)
b) \(A\) và \(B\) là hai biến cố độc lập \( \Rightarrow P\left( {AB} \right) = P\left( A \right)P\left( B \right) = 0,5.P\left( A \right)\)
\(\begin{array}{l}P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) \Leftrightarrow 0,7 = P\left( A \right) + 0,5 - 0,5.P\left( A \right)\\ \Leftrightarrow 0,5P\left( A \right) = 0,2 \Leftrightarrow P\left( A \right) = 0,4\end{array}\)
tham khảo
a)\(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(AB\right).\)
Suy ra \(P\left(AB\right)=0,4\)
\(P\left(\overline{A}B\right)=P\left(B\right)-P\left(AB\right)=0,7-0,4=0,3\)
\(P\left(\overline{A}\overline{B}\right)=1-P\left(A\cup B\right)=0,2\)
b) Vì \(P\left(AB\right)\ne P\left(A\right).P\left(B\right)\) nên A và B không độc lập.
tham khảo
\(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(AB\right)=0,7\)
\(\Rightarrow D\)
a) \(P\left( {\bar A} \right) = 1 - P\left( A \right) = 1 - 0,7 = 0,3;P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,2 = 0,8\)
\(\begin{array}{l}P\left( {AB} \right) = P\left( A \right)P\left( B \right) = 0,7.0,2 = 0,14\\P\left( {\bar AB} \right) = P\left( {\bar A} \right)P\left( B \right) = 0,3.0,2 = 0,06\\P\left( {\bar A\bar B} \right) = P\left( {\bar A} \right)P\left( {\bar B} \right) = 0,3.0,8 = 0,24\end{array}\)
b) \(P\left( {\bar A} \right) = 1 - P\left( A \right) = 1 - 0,5 = 0,5\)
\(\begin{array}{l}P\left( B \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,3}}{{0,5}} = 0,6 \Rightarrow P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,6 = 0,4\\P\left( {\bar AB} \right) = P\left( {\bar A} \right)P\left( B \right) = 0,5.0,6 = 0,3\\P\left( {\bar A\bar B} \right) = P\left( {\bar A} \right)P\left( {\bar B} \right) = 0,5.0,4 = 0,2\end{array}\)
a) \(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(AB\right)=P\left(A\right)+P\left(B\right)-P\left(A\right)P\left(B\right)\)
\(=0,6+0,3-0,18=0,72\)
b) \(P\left(\overline{A}\cup\overline{B}\right)=1-P\left(AB\right)=1-0,18=0,82\)
A, B là hai biến cố độc lập. P(A) =0,5.\(P\left(A\cap B\right)=0,2\). Tính \(P\left(A\cup B\right)\)
\(P\left(B\right)=\dfrac{P\left(A\cap B\right)}{P\left(A\right)}=0,4\)
\(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(A\cap B\right)=0,7\)
tham khảo
a) Số kết quả thuận lợi cho biến cố A là \(C^3_{17}=680\)
Số kết quả thuận lợi cho biến cố B là \(C^2_{17}.C^1_{15}=2040\)
b)\(A\cup B\) là biến cố "Có ít nhất 2 học sinh nữ trong 3 học sinh được chọn"Số kết quả thuận lợi cho biến cố \(A\cup B\) là:\(680+2040=2720\)
Số kết quả thuận lợi cho biến cố \(A \cup B\) là \(5 + 12 = 17\).
\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{5}{{n\left( \Omega \right)}};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega\right)}} = \frac{{12}}{{n\left( \Omega\right)}};P\left( {A \cup B} \right) = \frac{{n\left( {A \cup B} \right)}}{{n\left( \Omega\right)}} = \frac{{17}}{{n\left( \Omega\right)}}\)
\( \Rightarrow P\left( A \right) + P\left( B \right) = P\left( {A \cup B} \right)\)