Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác OBM và tam giác OAM có:
OA=OB; góc BOM=góc AOM; OM chung
=> Tam giác OBM= tam giác OAM
=> MA=MB
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
a: Xét ΔOAI và ΔOBI có
OA=OB
\(\widehat{AOI}=\widehat{BOI}\)
OI chung
Do đó: ΔOAI=ΔOBI
b: Ta có: ΔOAI=ΔOBI
=>IA=IB
=>I nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OI là đường trung trực của BA
=>OI\(\perp\)AB
=>Oz\(\perp\)AB
c: ta có: Oz\(\perp\)AB
AB//CD
Do đó: Oz\(\perp\)CD tại I
Xét ΔOCD có
OI là đường cao
OI là đường phân giác
Do đó;ΔOCD cân tại O
Ta có: ΔOCD cân tại O
mà OI là đường cao
nên I là trung điểm của CD
d: Ta có: OB+BD=OD
OA+AC=OC
mà OB=OA
và OC=OD
nên BD=AC
Xét ΔBDC và ΔACD có
BD=AC
\(\widehat{BDC}=\widehat{ACD}\)(ΔOCD cân tại O)
CD chung
Do đó: ΔBDC=ΔACD
=>\(\widehat{BCD}=\widehat{ADC}\)
=>\(\widehat{MCD}=\widehat{MDC}\)
Xét ΔMCD có \(\widehat{MCD}=\widehat{MDC}\)
nên ΔMCD cân tại M
=>MC=MD
=>M nằm trên đường trung trực của CD(3)
Ta có: ΔOCD cân tại O
mà OI là đường cao
nên OI là đường trung trực của CD(4)
Từ (3) và (4) suy ra O,M,I thẳng hàng
a) Vì tia Oz là tia phân giác \(\widehat{xOy}\) :
=> \(\widehat{xOz}=\widehat{zOy}=\dfrac{\widehat{xOy}}{2}=\dfrac{60^0}{2}=30^0\)
=> \(\widehat{zOy}=30^0\)
b) Xét \(\Delta OIAvà\Delta OIBcó:\)
OI (chung)
\(\widehat{AOI}=\widehat{BOI}\) (OI là tia phân giác \(\widehat{xOy}\) )
OA = OB ( gt)
Do đó: \(\Delta OIA=\Delta OIB\left(c-g-c\right)\)
c) Vì \(\Delta OIA=\Delta OIB\left(cmt\right)\)
=> \(\widehat{BIO}=\widehat{AIO}\) (hai góc tương ứng)
mà \(\widehat{BIO}+\widehat{AIO}=180^0\) (kề bù)
=> \(\widehat{BIO}=\widehat{AIO}=90^0\)
=> \(OI\perp AB\)
d) Xét \(\Delta BOMvà\Delta AOMcó:\)
OM (chung)
\(\widehat{BOM}=\widehat{AOM}\) (OM là tia phân giác \(\widehat{xOy}\) )
OB = OA (gt)
Do đó: \(\Delta BOM=\Delta AOM\left(c-g-c\right)\)
=> MA = MB (hai cạnh tương ứng)
e) Vì OI \(\perp\) AB
mà AB // DC
=> \(OI\perp DC\)
mà I và M cùng nằm trên tia Oz
=> \(OM\perp DC\)
=> \(\widehat{DMO}=\widehat{CMO}=90^0\)
Xét \(\Delta DOMvà\Delta COMcó:\)
OM (chung)
\(\widehat{DOM}=\widehat{COM}\) (OM là tia phân giác \(\widehat{xOy}\) )
\(\widehat{DMO}=\widehat{CMO}\left(cmt\right)\)
Do đó: \(\Delta DOM=\Delta COM\left(g-c-g\right)\)
=> OD = OC (hai cạnh tương ứng)
mà OB = OA
BD = OD - OB
AC = OC - OA
=> BD = AC (đpcm)