K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

O x y E F A

Có: \(S_{OEF}=S_{AOE}+S_{AOF}\)

\(\Leftrightarrow\frac{1}{2}.\sin\widehat{O}.OE.OF=\frac{1}{2}.\sin\frac{\widehat{O}}{2}.OA.\left(OE+OF\right)\)

\(\Leftrightarrow\sin\widehat{O}.OE.OF=\sin\frac{\widehat{O}}{2}.OA.\left(OE+OF\right)\)

\(\Leftrightarrow\frac{OE+OF}{OE.OF}=\frac{\sin\widehat{O}}{\sin\frac{\widehat{O}}{2}}\)

\(\Leftrightarrow\frac{1}{OE}+\frac{1}{OF}=\frac{\sin\widehat{O}}{\sin\frac{\widehat{O}}{2}}\)

Ta có số đo góc xOy không đổi nên \(\frac{\sin\widehat{O}}{\sin\frac{\widehat{O}}{2}}\)không đổi \(\Rightarrow\frac{1}{OE}+\frac{1}{OF}\)không đổi (đpcm)

1 tháng 12 2017

Bài 1:

A B C D E M N I J

Gọi E là giao điểm của phân giác AD với MN.

Qua E, kẻ đoạn thẳng IJ vuông góc với AD \(\left(I\in AB,J\in AC\right)\)

Gọi H là điểm đối xứng với M qua AD.

Ta thấy rằng \(\widehat{MEI}=\widehat{HEJ}\Rightarrow\widehat{HEJ}=\widehat{JEN}\) hay EJ là phân giác trong góc NEH.

Do \(EJ\perp EA\) nên EA là phân giác ngoài tại đỉnh E của tam giác NEH.

Theo tính chất tia phân giác trong và ngoài của tam giác, ta có:

\(\frac{NJ}{HJ}=\frac{EN}{EH}=\frac{AN}{AH}\Rightarrow\frac{\overline{NJ}}{\overline{NA}}:\frac{\overline{HJ}}{\overline{HA}}=-1\Rightarrow\left(AJNH\right)=-1\)

Áp dụng hệ thức Descartes, ta có \(\frac{2}{AJ}=\frac{1}{AH}+\frac{1}{AN}=\frac{1}{AM}+\frac{1}{AN}=\frac{3}{a}\)

\(\Rightarrow AJ=\frac{2a}{3}\)

Vậy J cố định, mà AD cố định nên IJ cũng cố định. Vậy thì E cũng cố định.

\(AJ=\frac{2a}{3}\Rightarrow AE=\frac{2.AD}{3}\) hay E là trọng tâm tam giác ABC.

Tóm lại MN luôn đi qua trọng tâm tam giác ABC.

2 tháng 12 2017

giúp em vs CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2

29 tháng 11 2017

Bạn tham khảo ở đây nhé

Câu hỏi của vũ tiền châu - Toán lớp 9 - Học toán với OnlineMath

15 tháng 3 2018

a, Chỉ ra |OI – OK| < IK < OI + OK => (1) và (k) luôn cắt nhau

b, Do OI=NK, OK=IM => OM=ON

Mặt khác OMCN là hình chữ nhật => OMCN là hình vuông

c, Gọi{L} = KB ∩ MC, {P} = IBNC => OKBI là Hình chữ nhật và BNMI là hình vuông

=> ∆BLC = ∆KOI

=>  L B C ^ = O K I ^ = B I K ^

mà  B I K ^ + I B A ^ = 90 0

L B C ^ + L B I ^ + I B A ^ = 180 0

d, Có OMCN là hình vuông cạnh a cố định

=> C cố định và AB luôn đi qua điểm C