Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi E là giao điểm của phân giác AD với MN.
Qua E, kẻ đoạn thẳng IJ vuông góc với AD \(\left(I\in AB,J\in AC\right)\)
Gọi H là điểm đối xứng với M qua AD.
Ta thấy rằng \(\widehat{MEI}=\widehat{HEJ}\Rightarrow\widehat{HEJ}=\widehat{JEN}\) hay EJ là phân giác trong góc NEH.
Do \(EJ\perp EA\) nên EA là phân giác ngoài tại đỉnh E của tam giác NEH.
Theo tính chất tia phân giác trong và ngoài của tam giác, ta có:
\(\frac{NJ}{HJ}=\frac{EN}{EH}=\frac{AN}{AH}\Rightarrow\frac{\overline{NJ}}{\overline{NA}}:\frac{\overline{HJ}}{\overline{HA}}=-1\Rightarrow\left(AJNH\right)=-1\)
Áp dụng hệ thức Descartes, ta có \(\frac{2}{AJ}=\frac{1}{AH}+\frac{1}{AN}=\frac{1}{AM}+\frac{1}{AN}=\frac{3}{a}\)
\(\Rightarrow AJ=\frac{2a}{3}\)
Vậy J cố định, mà AD cố định nên IJ cũng cố định. Vậy thì E cũng cố định.
\(AJ=\frac{2a}{3}\Rightarrow AE=\frac{2.AD}{3}\) hay E là trọng tâm tam giác ABC.
Tóm lại MN luôn đi qua trọng tâm tam giác ABC.
giúp em vs CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2
Bạn tham khảo ở đây nhé
Câu hỏi của vũ tiền châu - Toán lớp 9 - Học toán với OnlineMath
a, Chỉ ra |OI – OK| < IK < OI + OK => (1) và (k) luôn cắt nhau
b, Do OI=NK, OK=IM => OM=ON
Mặt khác OMCN là hình chữ nhật => OMCN là hình vuông
c, Gọi{L} = KB ∩ MC, {P} = IBNC => OKBI là Hình chữ nhật và BNMI là hình vuông
=> ∆BLC = ∆KOI
=> L B C ^ = O K I ^ = B I K ^
mà B I K ^ + I B A ^ = 90 0
L B C ^ + L B I ^ + I B A ^ = 180 0
d, Có OMCN là hình vuông cạnh a cố định
=> C cố định và AB luôn đi qua điểm C
Có: \(S_{OEF}=S_{AOE}+S_{AOF}\)
\(\Leftrightarrow\frac{1}{2}.\sin\widehat{O}.OE.OF=\frac{1}{2}.\sin\frac{\widehat{O}}{2}.OA.\left(OE+OF\right)\)
\(\Leftrightarrow\sin\widehat{O}.OE.OF=\sin\frac{\widehat{O}}{2}.OA.\left(OE+OF\right)\)
\(\Leftrightarrow\frac{OE+OF}{OE.OF}=\frac{\sin\widehat{O}}{\sin\frac{\widehat{O}}{2}}\)
\(\Leftrightarrow\frac{1}{OE}+\frac{1}{OF}=\frac{\sin\widehat{O}}{\sin\frac{\widehat{O}}{2}}\)
Ta có số đo góc xOy không đổi nên \(\frac{\sin\widehat{O}}{\sin\frac{\widehat{O}}{2}}\)không đổi \(\Rightarrow\frac{1}{OE}+\frac{1}{OF}\)không đổi (đpcm)