K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

x y A B M N H I

a) Xét ΔMAO vuông tại A và ΔNBO vuông tại B có:

OA = OB (GT)

góc O chung

=> ΔMAO = ΔNBO (cạnh huyền - góc nhọn)

=> OM = ON ( 2 cạnh tương ứng ) → đpcm

Ta có OA + AN = ON

OB + BM = OM

mà OM = ON ( cm trên ); OA = OB

=> AN = BM → đpcm

b) Xét ΔNOH và ΔMOH có;

ON = OM (cm trên)

OH chung

NH = MH (suy từ gt)

=> ΔNOH = ΔMOH (c.c.c)

=> góc NOH = MOH ( 2 góc tương ứng )

Do đó OH là tia pg của góc xOy → đpcm (1)

c) Vì ΔMAO = ΔNBO nên góc OMA = ONB (2 góc tương ứng) hay ANI = BMI.

Xét ΔNAI và ΔMBI có:

góc ANI = BMI (cm trên)

AN = BM ( câu a)

góc NAI = MBI (= 90 )

=> ΔNAI = ΔMBI ( g.c.g )

=> AI = BI (2 cạnh tương ứng)

Xét ΔAOI và ΔBOI có :

AI = BI (cm trên)

góc OAI = OBI (=90)

OI chung

=> ΔAOI = ΔBOI ( c.g.c )

=> góc AOI = BOI ( 2 góc tương ứng )

Do đó OI là tia pg của xOy (2)

Từ (1) ở câu b và (2) suy ra O, H, I thẳng hàng.

Chúc học tốt nguyen thi minh nguyet hihi

20 tháng 12 2016

a) Xét t/g OAM vuông tại A và t/g OBN vuông tại B có:

OA = OB (gt)

O là góc chung

Do đó, t/g OAM = t/g OBN ( cạnh góc vuông và góc nhọn kề)

=> AMO = BNO (2 góc tương ứng)

OM = ON (2 cạnh tương ứng) (1)

Lại có: OB = OA (gt)

=> OM - OB = ON - OA

=> BM = AN (2)

(1) và (2) là đpcm

b) Xét t/g HAN vuông tại A và t/g HBM vuông tại B có:

AN = BM (câu a)

ANH = BMH (câu a)

Do đó, t/g HAN = t/g HBM ( cạnh góc vuông và góc nhọn kề)

=> HN = HM (2 cạnh tương ứng)

Dễ dàng c/m t/g NOH = t/g MOH (c.c.c)

=> NOH = MOH (2 góc tương ứng)

=> OH là phân giác NOM hay OH là phân giác xOy (đpcm)

c) Dễ dàng c/m t/g NOI = t/g MOI (c.c.c)

=> NOI = MOI (2 góc tương ứng)

=> OI là phân giác NOM

Mà OH cũng là phân giác NOM

Nên O,H,I thẳng hàng (đpcm)

 

a: Xét ΔOAM và ΔOBM có

OA=OB

\(\widehat{AOM}=\widehat{BOM}\)

OM chung

Do đó: ΔOAM=ΔOBM

b: Xét ΔOAC và ΔOBD có

\(\widehat{AOC}\) chung

OA=OB

\(\widehat{OAC}=\widehat{OBD}\)

Do đó; ΔOAC=ΔOBD

Suy ra: AC=BD

a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có 

MB=MC

\(\widehat{MBE}=\widehat{MCF}\)

Do đó:ΔBEM=ΔCFM

b: Ta có: AE+EB=AB

AF+FC=AC

mà EB=FC

và AB=AC
nên AE=AF

mà ME=MF

nên AM là đường trung trực của EF

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(1)

Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung

AB=AC
Do đó: ΔABD=ΔACD

Suy ra: DB=DC

hay D nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra A,M,D thẳng hàng

25 tháng 2 2017

bạn ơi cho mình hình đc ko?

18 tháng 6 2017

Ta có hình vẽ:

x O y z H A B D C

a/ Xét hai tam giác vuông OAH và OBH có:

góc AOH = góc BOH (Gt)

OH: cạnh chung

=> tam giác OAH = tam giác OBH

=> OA = OB (hai cạnh tương ứng)

Vậy tam giác OAB cân tại O

b/ Ta có: OA = OB (cmt)

Ta lại có: AH = BH (t/g OAH = t/g BOH)

=> OH là trung trực của AB

=> OH vuông góc vs AB

hay OH là đường cao của tam giác OAB

Ta có: AD vuông góc với OB

hay AD là đường cao của tam giác OAB

Mà AD cắt OH tại C

=> C là trực tâm của tam giác

=> BC vuông góc vs OA

hay BC vuông góc vs Ox