K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có f(x)=1+x^3+x^5+x^7+....+x^101                   (1)

Thay x=1 vào (1) ta đc

f(1)=1+1^3+1^5+...+1^101

     =1+1+1+...1+1

     =51(có 51 số 1)

Vậy f(1)=51

Thay x=-1 vào (1) ta đc

f(-1)=1+(-1)^3+(-1)^5+(-1)^7+...+(-1)^101

      =1+(-1)+(-1)+(-1)+...+(-1)

      =1+(-50) ( có 50 số -1)

      =-49

Vậy f(-1)=-49

 

24 tháng 5 2021

f(1)=1+13+15+...+1101

f(1)=1+1+1+..+1(Có:(101-1)/2+1=51 số số hạng)

f(1)=1x51=51

f(-1)=1+(-13)+ (-15)+...+(-1101)

f(-1)=-1+-1+-1+..+-1(Có:(101-3)/2+1=50 số số hạng)

f(-1)=-1x51+1=-51+1=-50