Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại các số nguyên a,b,c thỏa mãn đề bài
Ta có:\(\hept{\begin{cases}f\left(1998\right)=1998^2a+1998b+c=1\\f\left(2000\right)=2000^2a+2000b+c=2\end{cases}}\)
\(\Rightarrow f\left(2000\right)-f\left(1998\right)=\left(2000^2a+2000b+c\right)-\left(1998^2a+1998b+c\right)=2-1\)
\(\Leftrightarrow\left(2000^2-1998^2\right)a+2b=1\)
Ta thấy 1 là số lẻ mà 2b và (2000^2-1998^2)a là số chẵn nên 2b+(2000^2-1998^2)a là số chắn(Vô lý)
Vậy ko tồn tại các số nguyên a,b,c thỏa mãn đề bài(đpcm)
Với đa thức hệ số nguyên, xét 2 số nguyên m, n bất kì, ta có:
\(f\left(m\right)-f\left(n\right)=am^3+bm^2+cm+d-an^3-bn^2-cn-d\)
\(=a\left(m^3-n^3\right)+b\left(m^2-n^2\right)+c\left(m-n\right)\)
\(=a\left(m-n\right)\left(m^2+n^2+mn\right)+b\left(m-n\right)\left(m+n\right)+c\left(m-n\right)\)
\(=\left(m-n\right)\left[a\left(m^2+n^2+mn\right)+b\left(m+n\right)+c\right]⋮\left(m-n\right)\)
\(\Rightarrow f\left(m\right)-f\left(n\right)⋮m-n\) với mọi m, n nguyên
Giả sử tồn tại đồng thời \(f\left(7\right)=53\) và \(f\left(3\right)=35\)
Theo cmt, ta phải có: \(f\left(7\right)-f\left(3\right)⋮7-3\Leftrightarrow53-35⋮4\Rightarrow18⋮4\) (vô lý)
Vậy điều giả sử là sai hay không thể đồng thời tồn tại \(f\left(7\right)=53\) và \(f\left(3\right)=35\)