K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 3 2022

Với đa thức hệ số nguyên, xét 2 số nguyên m, n bất kì, ta có:

\(f\left(m\right)-f\left(n\right)=am^3+bm^2+cm+d-an^3-bn^2-cn-d\)

\(=a\left(m^3-n^3\right)+b\left(m^2-n^2\right)+c\left(m-n\right)\)

\(=a\left(m-n\right)\left(m^2+n^2+mn\right)+b\left(m-n\right)\left(m+n\right)+c\left(m-n\right)\)

\(=\left(m-n\right)\left[a\left(m^2+n^2+mn\right)+b\left(m+n\right)+c\right]⋮\left(m-n\right)\)

\(\Rightarrow f\left(m\right)-f\left(n\right)⋮m-n\) với mọi m, n nguyên

Giả sử tồn tại đồng thời \(f\left(7\right)=53\) và \(f\left(3\right)=35\)

Theo cmt, ta phải có: \(f\left(7\right)-f\left(3\right)⋮7-3\Leftrightarrow53-35⋮4\Rightarrow18⋮4\) (vô lý)

Vậy điều giả sử là sai hay không thể đồng thời tồn tại \(f\left(7\right)=53\) và \(f\left(3\right)=35\)

23 tháng 3 2022

em cảm ơn thầy

5 tháng 5 2018

Ta có : \(f(7)=a\cdot7^3+2\cdot b\cdot7^2+3\cdot c\cdot7+4d=343a+98b+21c+4d\)

Lại có : \(f(3)=a\cdot3^3+2\cdot b\cdot3^2+3\cdot c\cdot3+4d=27a+18b+9c+4d\)

Giả sử phản chứng nếu \(f(7)\)và \(f(3)\)đồng thời bằng 73 và 58 suy ra là :

\(f(7)-f(3)=(343a-27a)+(98b-18b)+(21c-9c)+(4d-4d)=73-58=15\)

\(\Rightarrow f(7)-f(3)=316a+90b+12c=15\)

Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k

\(f(7)-f(3)=2k=15\)

Mà 15 ko chia hết cho 2 , suy ra giả sử sai

=> đpcm

3 tháng 5 2018

Ta có f(7) = a.7^3+2.b.7^2+3.c.7+4d = 343a +98b+21c+4d

Lại có f(3)= \(a.3^3+2.b.3^2+3.c.3+4.d=27a+18b+9c+4d\\ \) 

Giả sử phản chứng : Nếu f(7) và f(3) đồng thời bằng 73 và 58 thì suy ra : \(f\left(7\right)-f\left(3\right)=\left(343a-27a\right)+\left(98b-18b\right)+\left(21c-9c\right)+\left(4d-4d\right)=73-58=15\)

\(\Rightarrow\)\(f\left(7\right)-f\left(3\right)=316a+90b+12c=15\)

Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k

\(\Rightarrow\)\(f\left(7\right)-f\left(3\right)=2k=15\)

Mà 15 ko chia hết cho 2 , suy ra giả sử sai

\(\Rightarrow\)\(\left(ĐPCM\right)\)

4 tháng 5 2018

Chỗ "các đơn thức chỉ có dạng chung duy nhất là 2k" ấy mình thấy thay bằng:

Mà \(f\left(7\right)-f\left(3\right)=316a+90b+12c\)

                               \(=2\left(158a+45b+6c\right)⋮2\)

                                 =>ĐCCM

hay hơn.

Dù sao thì cũng cho bạn !!!

Tham khảo:

loading...

 

4 tháng 5 2018

Ko biết là bạn có cần nữa ko.

Nhưng mình vẫn trả lời cho những bạn khác đang cần.

Do P(0) và P(1) lẻ nên ta có:

P(0)=d=> d là số lẻ

P(1)=a+b+c+d => a+b+c+d là số lẻ

Giả sử y là nghiệm nguyên của P(x). Khi đó:

P(y)=ay^3+by^2+cy+d=0

     =>ay^3+by^2+cy=-d

Mà d là số lẻ

=>y là số lẻ

Lại có: P(y)-P(1)=(ay^3+by^2+cy+d)-(a+b+c+d)

                         =a(y^3-1)+b(y^2-1)+c(y-1)+(d-d)

                         =a(y^3-1)+b(y^2-1)+c(y-1)

Do y là số lẻ=>P(y)-P(1) là số chẵn(1)

Mà P(y)-P(1)= 0-a+b+c+d

                   =-a-b-c-d

Do a+b+c+d lẻ

=>-a-b-c-d lẻ 

Hay P(y)-P(1) là số lẻ(2)

Vì (1) và (2) mâu thuẫn

=> Giả sử sai

Hay f(x) ko thể có nghiệm là các số nguyên(ĐCCM)

4 tháng 5 2018

 Chỗ: mà d là số lẻ bổ sung thêm cho mình: nên -d là số lẻ nha

hihi

Mấy cái này mk kho bít sorry!!!!!!253564656464646474748949474626515466575757575665555

9 tháng 5 2022

easy

7 tháng 2 2022

Giả sử tồn tại \(f\left(7\right)=72\) và \(f\left(3\right)=42\). Ta có:

\(\left\{{}\begin{matrix}f\left(7\right)=a.7^3+2.b.7^2+3.c.7+4d=343a+98b+21c+4d\\f\left(3\right)=a.3^3+2.b.3^3+3.c.3+4d=27a+18b+9c+4d\end{matrix}\right.\)

\(\Rightarrow f\left(7\right)+f\left(3\right)=\left(343a+27a\right)+\left(98b+18b\right)+\left(21c+9c\right)+\left(4d+4d\right)=370a+116b+30c+8d⋮̸2\)

Mà \(f\left(7\right)+f\left(3\right)=72+42=112⋮2\) 

Từ hai điều trên suy ra giả thiết sai.

Vậy không thể tồn tại \(f\left(7\right)=72\) và \(f\left(3\right)=42\)

3 tháng 4

72+42=112 ak bạn

AH
Akai Haruma
Giáo viên
21 tháng 12 2021

Lời giải:

Giả sử tồn tại điều như đề nói.

$f(7)=343a+98b+21c+4d=72$

$f(3)=27a+18b+9c+4d=42$

$\Rightarrow f(7)-f(3)=316a+80b+12c=30$

$\Rightarrow 4(79a+20b+3c)=30$

$\Rightarrow 79a+20b+3c=\frac{30}{4}\not\in\mathbb{Z}$

 (vô lý vì $a,b,c$ là các số nguyên)

Do đó điều giả sử là sai, tức là không tồn tại $f(7)=72$ và $f(3)=42$

29 tháng 11 2023

\(f\left(x\right)=ax^3+2bx^2+3cx+4d\)

\(f\left(7\right)=a\cdot7^3+2b\cdot7^2+3c\cdot7+4d\)

\(=343a+98b+21c+4d\)

\(f\left(3\right)=a\cdot3^3+2b\cdot3^2+3c\cdot3+4d\)

\(=27a+18b+9c+4d\)

\(f\left(7\right)+f\left(3\right)=343a+98b+21c+4d+27a+18b+9c+4d\)

\(=370a+116b+30c+8d\)

\(=2\left(185a+58b+15c+4d\right)⋮2\)

mà f(7)+f(3)=72+42=114 chia hết cho 2

nên có tồn tại f(7)=72 và f(3)=42 nha bạn

15 tháng 8 2015

\(f\left(2012\right)=2012^2a+2012b+c=2013\Rightarrow c\text{ lẻ.}\)

\(f\left(2014\right)=2014^2a+2014b+c=2014\Rightarrow c\text{ chẵn.}\)

2 điều trên mâu thuẫn nên ta có đpcm.