K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a} = \frac{a+b+c}{b+c+a}=1\) (tính chất của dãy tỉ số bằng nhau)

=> a=b=c

chúc bn học giỏi

1 tháng 1 2018

ta có 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow a=b=c\)

14 tháng 10 2018

\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2007.\frac{1}{90}\)

\(\Leftrightarrow\)\(\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{223}{10}\)

\(\Leftrightarrow\)\(1+\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}=\frac{223}{10}\)

\(\Leftrightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{193}{10}\)

Vậy \(S=\frac{193}{10}\)

Chúc bạn học tốt ~ 

14 tháng 10 2018

Cách 1: Nhân cả hai vế của đẳng thức cho \(a+b+c\)ta được:

\(\frac{a+b+c}{a+b}=\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{90}\)

\(\Rightarrow a+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{a+c}=\frac{2007}{90}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{2007}{90}-3=22,3-3=19,3\)

9 tháng 8 2017

Ta có :

\(A+3=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\)

\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)

\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)

\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)

\(=2017.\frac{1}{2017}=1\)

\(\Rightarrow A=1-3=-2\)

29 tháng 8 2016

a/

\(x-y=\frac{a}{b}-\frac{c}{d}=\frac{ad-cb}{bd}=\frac{1}{bd}.\) (1)

\(y-z=\frac{c}{d}-\frac{e}{h}=\frac{ch-de}{dh}=\frac{1}{dh}\)(2)

+ Nếu d>0 => (1)>0 và (2)>0 => x>y; y>x => x>y>z

+ Nếu d<0 => (1)<0 và (2)<0 => x<y; y<z => x<y<z

b/

\(m-y=\frac{a+e}{b+h}-\frac{c}{d}=\frac{ad+de-cb-ch}{d\left(b+h\right)}=\frac{\left(ad-cb\right)-\left(ch-de\right)}{d\left(b+h\right)}=\frac{1-1}{d\left(b+h\right)}=0\)

=> m=y

+

29 tháng 8 2016

cảm ơn bn nha Nguyễn Ngoc Anh Minh mk k cho bn r đó kb vs mk nha

19 tháng 2 2018

Ta có : 

\(\frac{a}{b+c}>\frac{a}{a+b+c}\)

\(\frac{b}{c+a}>\frac{b}{a+b+c}\)

\(\frac{c}{a+b}>\frac{c}{a+b+c}\)

\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\)\(M>1\) \(\left(1\right)\)

Lại có : 

\(\frac{a}{b+c}< \frac{a+a}{a+b+c}\)

\(\frac{b}{c+a}< \frac{b+b}{a+b+c}\)

\(\frac{c}{a+b}< \frac{c+c}{a+b+c}\)

\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{a+a}{a+b+c}+\frac{b+b}{a+b+c}+\frac{c+c}{a+b+c}=\frac{a+a+b+b+c+c}{a+b+c}=2\)

\(\Rightarrow\)\(M< 2\) \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(1< M< 2\)

Vậy \(M\) có giá trị không là số nguyên 

14 tháng 10 2018

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c.\)

\(\Rightarrow M=\frac{a^{2013}b^2c}{c^{2016}}=\frac{c^{2013+2}}{c^{2016}}=\frac{c^{2016}}{c^{2016}}=1\)

14 tháng 10 2018

a/b=b/c=c/a

Áp dụng t/c dãy tỉ số bằng nhau ta có :

a/b=b/c=c/a=a+b+c/b+c+a=1 

suy ra a/b =b/c=c/a=1 suy ra a=b=c 

suy ra M =1

22 tháng 8 2017

Gấp gáp chi em cuộc sống vẫn rực rỡ sắc màu

Chim vẫn reo ca và môi hôn đang đứng đợi

Hoa vẫn nở và xuân thì đương tới

Hãy trải lòng xao xuyến với tình yêu.

22 tháng 8 2017

Bà rảnh vừa thui nhá