K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2018

Ta có : 

\(\frac{a}{b+c}>\frac{a}{a+b+c}\)

\(\frac{b}{c+a}>\frac{b}{a+b+c}\)

\(\frac{c}{a+b}>\frac{c}{a+b+c}\)

\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\)\(M>1\) \(\left(1\right)\)

Lại có : 

\(\frac{a}{b+c}< \frac{a+a}{a+b+c}\)

\(\frac{b}{c+a}< \frac{b+b}{a+b+c}\)

\(\frac{c}{a+b}< \frac{c+c}{a+b+c}\)

\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{a+a}{a+b+c}+\frac{b+b}{a+b+c}+\frac{c+c}{a+b+c}=\frac{a+a+b+b+c+c}{a+b+c}=2\)

\(\Rightarrow\)\(M< 2\) \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(1< M< 2\)

Vậy \(M\) có giá trị không là số nguyên