K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Ta có:

MA = MB ( tính chất 2 tiếp tuyến cắt nhau)

OA = OB ( cùng bằng bán kính đường tròn (O)

⇒ OM là đường trung trực của AB

OM ∩ AB = K ⇒ K là trung điểm của AB

a: Xét (O) có 

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO⊥AB

mà ΔOAB cân tại O

nên K là trung điểm của AB

22 tháng 9 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Ta có: ∠(ABN ) = 90 0 (B thuộc đường tròn đường kính AN)

⇒ BN // MO ( cùng vuông góc với AB)

Do đó:

∠(AOM) = ∠(ANB) (đồng vị))

∠(AOM) = ∠(BOM) (OM là phân giác ∠(AOB))

⇒ ∠(ANB) = ∠(BOM)

Xét ΔBHN và ΔMBO có:

∠(BHN) = ∠(MBO ) = 90 0

∠(ANB) = ∠(BOM)

⇒ ΔBHN ∼ ΔMBO (g.g)

Đề kiểm tra Toán 9 | Đề thi Toán 9

Hay MB. BN = BH. MO

8 tháng 9 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Tam giác MAO vuông tại A, AK là đường cao có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

16 tháng 6 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Ta có:

K là trung điểm của CE (E đối xứng với C qua AB)

K là trung điểm của AB

AB ⊥ CE (MO ⊥ AB)

⇒ Tứ giác AEBC là hình thoi

⇒ BE // AC

Mà AC ⊥ AD (A thuộc đường tròn đường kính CD)

Nên BE ⊥ AD và DK ⊥ AB

Vậy E là trực tâm của tam giác ADB

27 tháng 5 2018

giúp câu c

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:

1.

Vì $MA, MB$ là tiếp tuyến của $(O)$ nên:

$MA\perp OA, MB\perp OB$

$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$

Tứ giác $MAOB$ có tổng 2 góc đối nhau $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.

$\Rightarrow M, A, O,B$ cùng thuộc 1 đường tròn.

2.

Vì $MA=MB, OA=OB$ nên $MO$ là trung trực cuả $AB$

$\Rightarrow MO\per AB$ tại $H$

Xét tam giác $AMO$ vuông tại $A$ có đường cao $AH$. Áp dụng hệ thức lượng trong tgv thì:

$MA^2=MH.MO$

Xét tam giác $MCB$ và $MBD$ có:

$\widehat{M}$ chung

$\widehat{MBC}=\widehat{MDB}$ (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó)

$\Rightarrow \triangle MCB\sim \triangle MBD$ (g.g)

$\Rightarrow \frac{MC}{MB}=\frac{MB}{MD}$

$\Rightarrow MC.MD=MB^2$

Mà $MB^2=MA^2\Rightarrow MA^2=MH.MO=MC.MD$ (đpcm)

 

 

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Hình vẽ: