K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2015

vui lòng viết dấu để mình trả lời

a: Xét (O) có

CM,CA là các tiếp tuyến

nen CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA 

nên OC vuông góc với MA tại trung điểm của MA

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD vuông góc với MB tại trung điểm của MB

Từ (1)và (2) suy ra góc COD=1/2*180=90 độ

=>O nằm trên đường tròn đường kính DC

b: Xét tứ giác MIOK có

góc MIO=góc IOK=góc MKO=90 độ

nên MIOK là hình chữ nhật

=>MO=IK

c: Xét hình thang ABDC có

O,O' lần lượt là trung điểm của AB,CD

nên OO' là đường trung bình

=>OO' vuông góc với AB

=>AB là tiếp tuyến của (O')

9 tháng 1 2019

Ta có \(\widehat{BMA}+\widehat{ONA}=90^0\)(Hai góc phụ nhau)

\(\widehat{BMA}+\widehat{ABM}=90^0\)(Hai góc phụ nhau)

Suy ra \(\widehat{ONA}=\widehat{ABM}\)

Xét △ABM và △ANO có

\(\widehat{ONA}=\widehat{ABM}\)(cmt)

\(\widehat{MAB}=\widehat{NAO}=90^0\)

Suy ra △ABM \(\sim\) △ANO(g-g)

\(\Rightarrow\dfrac{AB}{AN}=\dfrac{AM}{AO}\) hay AM.AN=AB.AO=2R.R=2R2(không đổi)

Vậy AM.AN không đổi khi M chuyển động trên d