Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy \(\Delta MCB~\Delta MDC\left(g.g\right)\Rightarrow\frac{MC}{MD}=\frac{BC}{CD}\)( 1 )
\(\Delta MAB~\Delta MDA\left(g.g\right)\Rightarrow\frac{MA}{MD}=\frac{AB}{AD}\)( 2 )
Lại có MA = MC . Từ ( 1 ) và ( 2 ) suy ra \(\frac{BC}{CD}=\frac{AB}{AD}\Rightarrow AD.BC=AB.CD\)
Áp dụng định lí Ploleme với tứ giác ABCD, ta có :
\(AB.CD+AD.BC=AC.BD\)
\(\Rightarrow BC.AD=AC.BD-AB.CD=\frac{1}{2}AC.BD\)
\(\Rightarrow\frac{AC}{AD}=\frac{2BC}{BD}\)( 3 )
\(\Delta NBE~\Delta NDB\left(g.g\right)\Rightarrow\frac{NB}{ND}=\frac{BE}{DB}\); \(\Delta NCE~\Delta NDC\left(g.g\right)\Rightarrow\frac{NC}{ND}=\frac{CE}{CD}\)
lại có : NB = NC \(\Rightarrow\frac{BE}{BD}=\frac{CE}{CD}\Rightarrow BE.CD=CE.BD\)
Áp dụng định lí Ptoleme với tứ giác BECD, ta có :
\(BE.CD+CE.BD=BC.DE\Rightarrow BE.CD=CE.BD=\frac{1}{2}BC.DE\)
\(\Delta PBC~\Delta PDB\left(g.g\right)\Rightarrow\frac{PC}{PB}=\frac{PB}{PD}\Rightarrow PC.PD=PB^2\)
Mà \(\frac{PC}{PB}=\frac{PB}{PD}=\frac{BC}{BD}\)
Mặt khác : \(\frac{PC}{PD}=\frac{PC.PD}{PD^2}=\left(\frac{PB}{PD}\right)^2=\left(\frac{BC}{BD}\right)^2\)( 4 )
suy ra : \(\frac{PC}{PD}=\left(\frac{BC}{BD}\right)^2=\left(\frac{2CE}{DE}\right)^2\)
giả sử AE cắt CD tại Q
\(\Rightarrow\Delta QEC~\Delta QDA\left(g.g\right)\Rightarrow\frac{QC}{QD}=\left(\frac{2CE}{DE}\right)^2\)
\(\Rightarrow\frac{QC}{QD}=\frac{PC}{PD}\Rightarrow P\equiv Q\)
Vậy 3 điểm A,E,P thẳng hàng
v mình quên nối AE cắt CD. hay là nối 3 điểm A,E,P mà thôi, không sao.
a. Ta có ON cắt BC tại I, I là trung điểm của BC, ON là bán kính ⇒ ON ⊥ BC tại I.
Xét △OCI và △OBI :
\(\hat{OIC}=\hat{OIB}=90^o\left(cmt\right)\)
\(IC=IB\left(gt\right)\)
OI chung.
\(\Rightarrow\Delta OCI=\Delta OBI\left(c.g.c\right)\)
⇒ \(\hat{IOC}=\hat{IOB}\) hay : \(\hat{NOC}=\hat{NOB}\Rightarrow\stackrel\frown{NC}=\stackrel\frown{NB}\)
Mà : \(\hat{NAB}\) hay \(\hat{DAB}\) nội tiếp chắn cung NB, \(\hat{NAC}\) hay \(\hat{DAC}\) nội tiếp chắn cung NC.
Vậy : \(\hat{DAC}=\hat{DAB}\) hay AD là phân giác của góc BAC.
b. \(\hat{MAB}=\dfrac{1}{2}sđ\stackrel\frown{AB}\) (góc tạo bởi tia tiếp tuyến và dây cung).
\(\hat{ACB}=\dfrac{1}{2}sđ\stackrel\frown{AB}\) (góc nội tiếp chắn cung AB).
\(\Rightarrow\hat{MAB}=\hat{ACB}\Leftrightarrow\hat{MAB}=\hat{ACM}\)
Xét △MAB và △MCA :
\(\hat{MAB}=\hat{ACM}\left(cmt\right)\)
\(\hat{M}\) chung
\(=> \Delta MAB \backsim \Delta MCA (g.g)\) \(\Rightarrow\dfrac{MA}{MC}=\dfrac{MB}{MA}\Leftrightarrow MA^2=MB.MC\left(a\right)\)
Mặt khác : \(\hat{DAB}=\hat{DAC}\left(cmt\right)\) và \(\hat{DCA}=\hat{MAB}\left(cmt\right)\)
Mà \(\hat{ADM}=\hat{DAC}+\hat{DCA}\) (tính chất góc ngoài của tam giác).
\(\Rightarrow\hat{ADM}=\hat{DAB}+\hat{MAB}\Leftrightarrow\hat{ADM}=\hat{MAD}\)
⇒ △ADM cân tại M ⇒ \(MA=MD\left(b\right)\)
Từ (a), (b) : Vậy : \(MD^2=MB.MC\left(đpcm\right)\)
Bài này mình không biết 4 năm nữa mình mới học mấy cái bài này
bạn đợi ấy đến năm 2022 nha
mình 4 năm nữa
chúc bạn học tốt