K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc ACN=1/2*sđ cung MC

góc BAD=góc MDC=1/2*sđ cung MC

=>góc ACN=góc BAD

b: Xét ΔNAM và ΔNCA có

góc NAM=góc NCA

góc N chung

=>ΔNAM đồng dạng với ΔNCA

=>NA/NC=NM/NA

=>NA^2=NM*NC

18 tháng 3 2021

ai đó làm dùng cái tôi cũng đang cần bài này :((

 

a) Xét tứ giác ABOC có 

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Bài 1: Từ điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA và MB (A,B là tiếp điểm ). Cho biết góc AMB bằng 400a) Tính góc AOBb) Từ O kẽ đường thẳng vuông góc OA cắt MB tại N. Chứng minh tam giác OMN là tam giác cânBài 2 Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba...
Đọc tiếp

Bài 1: Từ điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA và MB (A,B là tiếp điểm ). Cho biết góc AMB bằng 400

a) Tính góc AOB

b) Từ O kẽ đường thẳng vuông góc OA cắt MB tại N. Chứng minh tam giác OMN là tam giác cân

Bài 2 Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba với đường tròn , nó cắt Ax , By lần lượt tai C và D

a) chứng minh : Tam giác COD là tam giác vuông

b)Chứng minh : MC.MD=OM2

c) Cho biết OC=BA=2R, tính AC và BD theo R

Bài 3 : Cho hai đường tròn (O) và (O') tiếp xúc ngoài với nhau tại B. Vẽ đường kính AB của đường tròn (O) và đường kính BC của đường tròn (O'). Đường tròn đường kính OC cắt (O) tại M và N

a)Đường thẳng CM cắt (O') tại P Chứng minh : OM////BP

b) Từ C kẽ đường thẳng vuông góc với CM cắt tia ON tại D . Chứng minh : Tam giác OCD là tam giác cân

1

Bài 2:

a: Xét (O) có

CM,CA là tiếp tuyến

nên OC là phân giác của góc MOA(1) và CM=CA
Xet (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

b:

Xét ΔCOD vuông tại O có OM là đường cao

nên MC*MD=OM^2

c: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)

 

30 tháng 12 2023

a: Xét (O) có

MA,MC là các tiếp tuyến

Do đó: MA=MC

=>\(\widehat{MAC}=\widehat{MCA}\)

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)BD tại C

=>ΔACD vuông tại C

Ta có: \(\widehat{MDC}+\widehat{MAC}=90^0\)(ΔACD vuông tại C)

\(\widehat{MCD}+\widehat{MCA}=\widehat{DCA}=90^0\)

mà \(\widehat{MAC}=\widehat{MCA}\)

nên \(\widehat{MDC}=\widehat{MCD}\)

=>MC=MD

mà MC=MA

nên MA=MD

=>M là trung điểm của AD

b: Xét (O) có

MC,MA là các tiếp tuyến

Do đó: OM là phân giác của góc AOC

=>\(\widehat{AOC}=2\cdot\widehat{MOC}\)

Ta có: tia OC nằm giữa hai tia OM và ON

=>\(\widehat{MOC}+\widehat{NOC}=\widehat{MON}=90^0\)

=>\(\widehat{NOC}=90^0-\widehat{MOC}\)

Ta có: \(\widehat{COA}+\widehat{COB}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{COM}+\widehat{COB}=2\cdot90^0=2\cdot\widehat{COM}+2\cdot\widehat{CON}\)

=>\(\widehat{COB}=2\cdot\widehat{CON}\)

=>ON là phân giác của góc COB

Xét ΔOBN và ΔOCN có

OB=OC

\(\widehat{BON}=\widehat{CON}\)

ON chung

Do đó: ΔOBN=ΔOCN

=>\(\widehat{OBN}=\widehat{OCN}=90^0\)

=>NB là tiếp tuyến của (O)

28 tháng 2 2019

E C A D B

Ta có: tỨ giác OCEA nội tiếp

=> \(\widehat{OCA}=\widehat{OEA}\)(1)

Vì OC=OB 

=> Tam giác OBC cân 

=> \(\widehat{OCA}=\widehat{OCB}=\widehat{OBC}\)(2)

Tứ giác ODAB nội tiếp

=> \(\widehat{ODA}=\widehat{OBC}\)( cùng bù với góc OBA) (3)

Từ (1), (2), (3)

=> \(\widehat{ODA}=\widehat{OEA}\)

=> Tam giác ODE cân có OA là đươngcao

=> OA là đường trung tuyến

=> A là trung điểm của DE

b) Xét tứ giác OMEC có

\(\widehat{OCE}\) và \(\widehat{OME}\) là hai góc đối

\(\widehat{OCE}+\widehat{OME}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OMEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)