K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc ACB=1/2*sđ cung AB=90 độ

góc EIB+góc ECB=180 độ

=>EIBC nội tiếp

b: Sửa đề: AE*AC-AI*AB=0

Xét ΔAIE vuông tại I và ΔACB vuông tại C co

góc IAE chung

=>ΔAIE đồng dạng với ΔACB

=>AI/AC=AE/AB

=>AI*AB=AE*AC

=>AI*AB-AE*AC=0

26 tháng 6 2021

1) Vì AB là đường kính \(\Rightarrow\angle ACB=90\)

\(\Rightarrow\angle ECB+\angle EIB=90+90=180\Rightarrow IECB\) nội tiếp

2)Vì AB là đường kính \(\Rightarrow\angle AMB=90\)

Ta có: \(\angle AME=90-\angle MAB=\angle ABM=\angle ACM\) (ABCM nội tiếp)

Xét \(\Delta AME\) và \(\Delta ACM:\) Ta có: \(\left\{{}\begin{matrix}\angle AME=\angle ACM\\\angle CAMchung\end{matrix}\right.\)

\(\Rightarrow\Delta AME\sim\Delta ACM\left(g-g\right)\)

3) Vì IECB nội tiếp \(\Rightarrow\angle IBK=\angle ECK\)

Xét \(\Delta EKC\) và \(\Delta IKB:\) Ta có: \(\left\{{}\begin{matrix}\angle IKB=\angle EKC\\\angle IBK=\angle ECK\end{matrix}\right.\)

\(\Rightarrow\Delta EKC\sim\Delta IKB\left(g-g\right)\Rightarrow\dfrac{EK}{IK}=\dfrac{EC}{IB}\Rightarrow EK.IB=EC.IK\)

undefined

a: góc ACB=1/2*sđ cung AB=90 độ

góc EIB+góc ECB=180 độ

=>ECBI nội tiếp đường tròn đường kính EB

Tâm là trung điểm của EB

b: Xét ΔANE và ΔACM có

góc ANE=góc ACM(=1/2sđ cung AM)

góc NAE=góc CAM

=>ΔANE đồng dạng với ΔACM

25 tháng 5 2019

c, Mình không vẽ được hình nên bạn thông cảm Gọi tâm đường tròn ngoại tiếp tam giác CME là K

Từ câu b : AM^2=AE.AC

Mà AC là cát tuyến của đường tròn ngoại tiếp tam giác CME

=> AM là tiếp tuyến của đường tròn ngoại tiếp tam giác CME

=> \(AM\perp MK\)

Mà \(AM\perp MB\)

=> M,K,B thẳng hàng

=> \(K\in MB\)cố định

Khi đó để NKmin thì K là hình chiếu của N lên MB

Đến đây bạn tự tính NK nhé

Sau đó từ MK để xác định điểm C

7 tháng 6 2019

c) 

5. Theo trên:  \(\widehat{AMN}=\widehat{ACM}\)

=> AM là tiếp tuyến của đường tròn  ngoại tiếp \(\Delta\) ECM;

Nối MB ta có\(\widehat{AMB}\)= 900 , do đó tâm O1 của đường tròn  ngoại tiếp\(\Delta\)ECM phải nằm trên BM

. Ta thấy NO1 nhỏ nhất khi NO1 là khoảng cách từ N đến BM => NO1 \(\perp\)BM.

Gọi Olà chân đường vuông góc kẻ từ N đến BM ta được:

O1 là tâm đường tròn  ngoại tiếp D ECM có bán kính là O1M.

Do đó để khoảng cách từ N đến tâm đường tròn  ngoại tiếp tam giác  CME là nhỏ nhất thì C phải là giao điểm của đường tròn  tâm O1 bán kính O1M với đường tròn  (O) trong đó Olà hình chiếu vuông góc của N trên BM.