K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2022

a. Ta có : \(\hat{BDM}=90^o\) (kề bù với \(\hat{BDA}\) nội tiếp chắn nửa đường tròn).

\(\hat{BCM}=90^o\left(gt\right)\)

Vậy : BCMD nội tiếp được một đường tròn (\(\hat{BDM}+\hat{BCM}=180^o\)) (đpcm).

 

b. Xét △ADB và △ACM :

\(\hat{ADB}=\hat{ACM}=90^o\)

\(\hat{A}\) chung

\(\Rightarrow\Delta ADB\sim\Delta ACM\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{AM}\Leftrightarrow AD.AM=AB.AC\) (đpcm).

 

c. Ta có : \(OD=OB=BD=R\) ⇒ △ODB đều.

\(\Rightarrow S_{\Delta ODB}=\dfrac{\sqrt{3}}{4}R^2\)

\(\hat{BOD}\) là góc ở tâm chắn cung BD \(\Rightarrow sđ\stackrel\frown{BC}=\hat{BOD}=60^o\) (do △ODB đều).

\(S_{ODB}=\dfrac{\text{π}R^2n}{360}=\dfrac{\text{π}R^2.60}{360}=\dfrac{\text{π}R^2}{6}\)

\(\Rightarrow S_{vp}=S_{ODB}-S_{\Delta ODB}=\dfrac{\text{π}R^2}{6}-\dfrac{\sqrt{3}}{4}R^2\)

\(=\dfrac{\text{π}}{6}R^2-\dfrac{\sqrt{3}}{4}R^2\)

\(=\dfrac{2\text{π}-3\sqrt{3}}{12}R^2\)