Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác DEK vuông tại K có KH là trung tuyến thuộc cạnh huyền DE nên: HK = HE = (1/2).DE (tính chất tam giác vuông)
Suy ra tam giác EHK cân tại H
a, (O) và (I) tiếp xúc trong với nhau
b, Tứ giác ADCE là hình thoi
c, Có CK ⊥ AB, AD ⊥ DB
=> CK//AD mà CE//AD
=> B,K,D thẳng hàng
d, H K D ^ = H D K ^ ; I K B ^ = I B K ^
=> H K D ^ + I K B ^ = I B K ^ + H D K ^ = 90 0
=> I K H ^ = 90 0
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA⊥BC
Tam giác ABD nội tiếp trong đường tròn (O) có Ab là đường kính nên vuông tại D
Suy ra: AD ⊥ BD
Tứ giác ADCE là hình thoi nên EC // AD
Suy ra: EC ⊥ BD (1)
Tam giác BCK nội tiếp trong đường tròn (O’) có BC là đường kính nên vuông tại K
Suy ra: CK ⊥ BD (2)
Từ (1) và (2) suy ra EC trùng với CK
Vậy E, C, K thẳng hàng.
a: Gọi E là trung điểm của OA
=>E là tâm đường tròn đường kính OA
Xét (E) có
ΔOBA nội tiếp
OA là đường kính
Do đó: ΔOBA vuông tại B
=>AB vuông góc OB tại B
=>AB là tiếp tuyến của (O)
Xét (O) có
ΔOCA nội tiếp
OA là đường kính
Do đó: ΔOCA vuông tại C
=>AC vuông góc với CO tại C
=>AC là tiếp tuyến của (O)
b: Xét (O) có
ΔBCK nội tiếp
BK là đường kính
Do đó: ΔBCK vuông tại C
=>BC vuông góc CK tại C
Xét (E) có
ΔBCI nội tiếp
BI là đường kính
Do đó: ΔBCI vuông tại C
=>BC vuông góc CI tại C
\(\widehat{KCI}=\widehat{KCB}+\widehat{ICB}\)
\(=90^0+90^0\)
\(=180^0\)
=>K,C,I thẳng hàng
Xét (B;BC) có
BC là bán kính
KI vuông góc với BC tại C
Do đó: KI là tiếp tuyến của (B;BC)
d) Xét tam giác DEK vuông tại K có KH là trung tuyến nên KH = HE
ΔKHE có KH = HE ⇒ ΔKHE cân tại H
⇒ ∠(HKE ) = ∠(KEH)
Lại có ΔO'CK cân tại O' ⇒ ∠(O'CK) = (O'KC)
⇒ ∠(HKE ) + ∠(O'KC) = ∠(KEH) + ∠(O'CK)
⇔ ∠(O'KH) = ∠(KEH) + ∠(O'CK)
Mặt khác ∠(O'CK) = ∠(HCE) (đối đỉnh)
ΔHEC vuông tại H nên ∠(KEH) + ∠(HCE) = 90o ⇒ ∠(KEH) + ∠(O'CK) = 90 0
Hay ∠(O'KH) = 90 0
⇒ KH là tiếp tuyến của (O')