K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2020

a) Kẻ OH ⊥⊥ d

=> OH là khoảng cách từ d tới tâm đường tròn (O)

mà OH < R (3 < 5)

=> Đường thẳng d cắt đường tròn (O)

b) Xét ΔΔOAH vuông tại H có:

OH2+AH2=OA2OH2+AH2=OA2 (ĐL Pi-ta-go)

=> AH=OA2−OH2−−−−−−−−−−√=52−32−−−−−−√=4(cm)AH=OA2−OH2=52−32=4(cm)

Xét (O): AB là dây, OH ⊥⊥ AB

=> H trung điểm AB (quan hệ ⊥⊥ giữa đường kính và dây cung)

=> AB = 2AH = 8(cm)

c) Xét ΔΔABC có: O, H trung điểm AC, AB

=> OH là đường trung bình ΔΔABC

=> OH // BC mà OH ⊥⊥ AH

=> BC ​⊥⊥​ AH => ΔΔABC vuông tại B

=> AB2 + BC2 = AC2

=> BC=102−82−−−−−−−√=6(cm)BC=102−82=6(cm)

Xét ΔΔABC vuông tại B

có: sinC=ABAC=810=45⇒Cˆ=53o7′sinC=ABAC=810=45⇒C^=53o7′

=> Aˆ=36o52′A^=36o52′

d) Xét ΔΔACM vuông tại C: CB ⊥⊥ AM

có: AC2=AB⋅AMAC2=AB⋅AM (HTL tam giác vuông)

=> AM=AC2AB=1028=12,5(cm)AM=AC2AB=1028=12,5(cm)

lại có: AB + BM = AM ; AB = 8(cm)

=> BM = 4,5(cm)

16 tháng 9 2019

Chọn đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

* Gọi (O’) là đường tròn đi qua D và tiếp xúc với AB tại B.

Đường tròn (O’) cắt CB tại F khác B. Chứng minh E F   / /   A B .

Ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Hai góc ở vị trí đồng vị  ⇒   E F / / A B

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB và MA=MB

MO là phân giác của góc AMB

=>\(\widehat{AMO}=\dfrac{\widehat{AMB}}{2}=\dfrac{60^0}{2}=30^0\)

Xét ΔOAM vuông tại A có \(tanAMO=\dfrac{OA}{AM}\)

=>\(\dfrac{6}{AM}=tan30=\dfrac{\sqrt{3}}{3}\)

=>\(AM=6\cdot\dfrac{3}{\sqrt{3}}=6\sqrt{3}\left(cm\right)\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

=>\(\widehat{MBA}=60^0\)

Gọi bán kính đường tròn nội tiếp ΔMAB là d

Diện tích tam giác MBA là:

\(S_{MBA}=\dfrac{1}{2}\cdot MA\cdot MB\cdot sinAMB\)

\(=\dfrac{1}{2}\cdot6\sqrt{3}\cdot6\sqrt{3}\cdot sin60=27\sqrt{3}\left(cm^2\right)\)

Nửa chu vi tam giác MBA là:

\(p=\dfrac{6\sqrt{3}+6\sqrt{3}+6\sqrt{3}}{2}=3\sqrt{3}\left(cm\right)\)

Xét ΔMBA có \(S_{MBA}=p\cdot d\)

=>\(d=\dfrac{27\sqrt{3}}{3\sqrt{3}}=9\left(cm\right)\)

12 tháng 2 2019

.mn kb nha

8 tháng 1 2022

c

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc vớiGọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại KXác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo RBài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ...
Đọc tiếp

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất

1

Bài 4:

a: 

Xét (O) có

ΔCED nội tiếp

CD là đường kính

=>ΔCED vuông tại E

ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

Xét tứ giác CEMF có

I là trung điểm chung của CM và EF

CM vuông góc EF

=>CEMF là hình thoi

=>CE//MF

=<MF vuông góc ED(1)

Xét (O') có

ΔMPD nội tiêp

MD là đường kính

=>ΔMPD vuông tại P

=>MP vuông góc ED(2)

Từ (1), (2) suy ra F,M,P thẳng hàng

b: góc IPO'=góc IPM+góc O'PM

=góc IEM+góc O'MP

=góc IEM+góc FMI=90 độ

=>IP là tiếp tuyến của (O')

30 tháng 4 2020

A B C O I M

1.Vì đường kính của (O) là 10cm

\(\Rightarrow\) Bán kính của (O) là  \(R=\frac{10}{2}=5\)

\(\Rightarrow d\left(O,d\right)=3< R=5\)

\(\Rightarrow d\left(O\right)\)cắt nhau tại 2 điểm phân biệt

2 . Kẻ \(OI\perp AB\Rightarrow I\) là trung điểm AB

Vì \(OI\perp AB\Rightarrow OI=3\Rightarrow AI^2=OA^2-0I^2=5^2-3^2=16\)

\(\Rightarrow AI=4\Rightarrow AB=2AI=8\) vì I là trung điểm AB

3.Vì O, I là trung điểm AC,AB

=> OI là đường trung bình \(\Delta ABC\Rightarrow BC=2OI=6\)

4 . Vì AC là đường kính của (O) 

\(\Rightarrow CB\perp AB\Rightarrow CB\perp AM\)

Mà \(CA\perp CM\Rightarrow CB^2=AB.BM\)

\(\Rightarrow BM=\frac{BC^2}{AB}=\frac{6^2}{8}=\frac{9}{2}\)