K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho đường tròn (O) điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF).Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO)a, Chứng minh MA. MB = ME.MFb, Gọi H là hình chiêu vuông góc của điểm c lên đuờng thẳng MO. Chứng minh tứ giác AHOB nội tiếpc, Trên nửa mặt phẳng bờ OM có chứa...
Đọc tiếp

Cho đường tròn (O) điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF).Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO)

a, Chứng minh MA. MB = ME.MF

b, Gọi H là hình chiêu vuông góc của điểm c lên đuờng thẳng MO. Chứng minh tứ giác AHOB nội tiếp

c, Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh các đường thẳng MSKC vuông góc nhau

d, Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFSABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng

1
20 tháng 9 2018

a, HS tự chứng minh

b, MH.MO = MA.MB ( =  M C 2 )

=> ∆MAH:∆MOB (c.g.c)

=>  M H A ^ = M B O ^

M B O ^ + A H O ^ = M H A ^ + A H O ^ = 180 0

=> AHOB nội tiếp

c, M K 2  = ME.MF = M C 2  Þ  MK = MC

∆MKS = ∆MCS (ch-cgv) => SK = SC

=> MS là đường trung trực của KC

=> MS ^ KC tại trung của CK

d, Gọi MS ∩ KC = I

MI.MS = ME.MF =  M C 2  => EISF nội tiếp đường tròn tâm P Þ PI = PS. (1)

MI.MS = MA.MB (=  M C 2 ) => AISB nội tiếp đường tròn tâm Q Þ QI = QS. (2)

Mà IT = TS = TK (do DIKS vuông tại I). (3)

Từ (1), (2) và (3) => P, T, Q thuộc đường trung trực của IS => P, T, Q thẳng hàng

25 tháng 1 2019

O M C E F A B H K S P Q T I

a) Theo tính chất góc tạo bởi tia tiếp tuyến và dây thì ^MCE = ^MFC (Cùng chắn cung CE) 

Suy ra: \(\Delta\)MEC ~ \(\Delta\)MCF (g.g) => MC2 = ME.MF (1)

Ta thấy: ^MKF = 900 (Góc nội tiếp chắn nửa đường tròn) => \(\Delta\)KMF vuông ở K

Xét \(\Delta\)KMF vuông tại K có đường cao KE => MK2 = ME.MF (2)   (Hệ thức lượng trong tg vuông)

Từ (1) và (2) => MC = MK. Khi đó: \(\Delta\)MCS và \(\Delta\)MKS có: ^MCS = ^MKS (=900), MC=MK, SM cạnh chung

=> \(\Delta\)MCS = \(\Delta\)MKS (Cạnh huyền . Cạnh góc vuông) => CS = KS. Do đó MS là trung trực của CK

Hay MS vuông góc với KC (đpcm).

b) Gọi giao điểm của MS và KC là I. Theo hệ thức lượng: MC2 = MI.MS = ME.MF = MA.MB 

=> Các tứ giác BAIS và SIEF nội tiếp => 2 đường tròn (P) và (Q) có 2 điểm chung là I và S

=> PQ là trung trực của IS => PQ vuông góc với IS tại trung điểm của IS. Mà IS vuông góc CK

Nên PQ // CK. Từ đó: PQ nằm trên đường thẳng chứa đường trung bình của \(\Delta\)CKS (PQ //CK)

Vậy thì PQ đi qua trung điểm của KS. Hay PQ đi qua T => 3 điểm P,Q,T thẳng hàng (đpcm).

Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF). Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phiá đối với đường thẳng MO).a) Chứng minh rằng : MA.MB = ME. MFb) Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác AHOB nội tiếp.c) Trên nửa mặt phẳng bờ OM có...
Đọc tiếp

Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF). Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phiá đối với đường thẳng MO).
a) Chứng minh rằng : MA.MB = ME. MF
b) Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác AHOB nội tiếp.
c) Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh rằng đường thẳng MS vuông góc với đường thẳng KC.
d) Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFS và ABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng.

 

0
 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0
29 tháng 5 2018

giúp mk vs ạ mk đang cần gấp

13 tháng 4 2019

IK² = IO² - R² 
IH² = (MH/2)²= (MA²/2MO)² = (MO² - R²)²/(2MO)² 
∆MIK cân <=> IM = IK <=> IH = IK 
<=> (MO² - R²)² = 4MO²(IO² - R²) 
<=> (MO² + R²)² = (2.MO.IO)² 
<=> MO² + R² = 2MO.IO 
<=> R² = MO(2IO - MO) = MO.HO đúng

17 tháng 3 2019

ae giúp tôi câu d nhá

8 tháng 6 2019

bn vô hoc 24h.vn hỏi nha 

~ Hok tốt ~
#JH