K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2019

O M C E F A B H K S P Q T I

a) Theo tính chất góc tạo bởi tia tiếp tuyến và dây thì ^MCE = ^MFC (Cùng chắn cung CE) 

Suy ra: \(\Delta\)MEC ~ \(\Delta\)MCF (g.g) => MC2 = ME.MF (1)

Ta thấy: ^MKF = 900 (Góc nội tiếp chắn nửa đường tròn) => \(\Delta\)KMF vuông ở K

Xét \(\Delta\)KMF vuông tại K có đường cao KE => MK2 = ME.MF (2)   (Hệ thức lượng trong tg vuông)

Từ (1) và (2) => MC = MK. Khi đó: \(\Delta\)MCS và \(\Delta\)MKS có: ^MCS = ^MKS (=900), MC=MK, SM cạnh chung

=> \(\Delta\)MCS = \(\Delta\)MKS (Cạnh huyền . Cạnh góc vuông) => CS = KS. Do đó MS là trung trực của CK

Hay MS vuông góc với KC (đpcm).

b) Gọi giao điểm của MS và KC là I. Theo hệ thức lượng: MC2 = MI.MS = ME.MF = MA.MB 

=> Các tứ giác BAIS và SIEF nội tiếp => 2 đường tròn (P) và (Q) có 2 điểm chung là I và S

=> PQ là trung trực của IS => PQ vuông góc với IS tại trung điểm của IS. Mà IS vuông góc CK

Nên PQ // CK. Từ đó: PQ nằm trên đường thẳng chứa đường trung bình của \(\Delta\)CKS (PQ //CK)

Vậy thì PQ đi qua trung điểm của KS. Hay PQ đi qua T => 3 điểm P,Q,T thẳng hàng (đpcm).

Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME<MF). Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO).a. Chứng minh rằng MA.MB = ME.MFb. Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác AHOB nội tiếp.c. Trên nửa mặt...
Đọc tiếp

Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME<MF). Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO).

a. Chứng minh rằng MA.MB = ME.MF

b. Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác AHOB nội tiếp.

c. Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh rằng đường thẳng MS vuông góc với đường thẳng KC.

d. Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFS và ABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng.

0
Cho đường tròn (O) điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF).Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO)a, Chứng minh MA. MB = ME.MFb, Gọi H là hình chiêu vuông góc của điểm c lên đuờng thẳng MO. Chứng minh tứ giác AHOB nội tiếpc, Trên nửa mặt phẳng bờ OM có chứa...
Đọc tiếp

Cho đường tròn (O) điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF).Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO)

a, Chứng minh MA. MB = ME.MF

b, Gọi H là hình chiêu vuông góc của điểm c lên đuờng thẳng MO. Chứng minh tứ giác AHOB nội tiếp

c, Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh các đường thẳng MSKC vuông góc nhau

d, Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFSABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng

1
20 tháng 9 2018

a, HS tự chứng minh

b, MH.MO = MA.MB ( =  M C 2 )

=> ∆MAH:∆MOB (c.g.c)

=>  M H A ^ = M B O ^

M B O ^ + A H O ^ = M H A ^ + A H O ^ = 180 0

=> AHOB nội tiếp

c, M K 2  = ME.MF = M C 2  Þ  MK = MC

∆MKS = ∆MCS (ch-cgv) => SK = SC

=> MS là đường trung trực của KC

=> MS ^ KC tại trung của CK

d, Gọi MS ∩ KC = I

MI.MS = ME.MF =  M C 2  => EISF nội tiếp đường tròn tâm P Þ PI = PS. (1)

MI.MS = MA.MB (=  M C 2 ) => AISB nội tiếp đường tròn tâm Q Þ QI = QS. (2)

Mà IT = TS = TK (do DIKS vuông tại I). (3)

Từ (1), (2) và (3) => P, T, Q thuộc đường trung trực của IS => P, T, Q thẳng hàng

Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF). Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phiá đối với đường thẳng MO).a) Chứng minh rằng : MA.MB = ME. MFb) Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác AHOB nội tiếp.c) Trên nửa mặt...
Đọc tiếp

Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF). Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phiá đối với đường thẳng MO).
a) Chứng minh rằng : MA.MB = ME. MF
b) Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác AHOB nội tiếp.
c) Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh rằng đường thẳng MS vuông góc với đường thẳng KC.
d) Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFS và ABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng.

 

0
Câu 3. Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳngMO cắt (O) tại E và F (ME < MF). Vẽ cát tuyến MAB và tiếp tuyến MC của đường tròn (O)(C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳngMO).a)Chứng minh rằng MA.MB = ME.MFb)Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giácAHOB nội...
Đọc tiếp

Câu 3. Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳngMO cắt (O) tại E và F (ME < MF). Vẽ cát tuyến MAB và tiếp tuyến MC của đường tròn (O)

(C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳngMO).
a)Chứng minh rằng MA.MB = ME.MF
b)Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác
AHOB nội tiếp.
d)Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa
đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO
và KF. Chứng minh rằng đường thẳng SM vuông góc với đường thẳng KC.
e)Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFS và ABS; X là trung
điểm của KS. Chứng minh ba điểm P, Q, X thẳng hàng. 

1

a) Xét (O) có 

\(\widehat{EFA}\) là góc nội tiếp chắn cung EA

\(\widehat{EBA}\) là góc nội tiếp chắn cung EA

Do đó: \(\widehat{EFA}=\widehat{EBA}\)(Hệ quả góc nội tiếp)

hay \(\widehat{MBE}=\widehat{MFA}\)

Xét ΔMBE và ΔMFA có 

\(\widehat{MBE}=\widehat{MFA}\)(cmt)

\(\widehat{AMF}\) chung

Do đó: ΔMBE∼ΔMFA(g-g)

Suy ra: \(\dfrac{MB}{MF}=\dfrac{ME}{MA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(MA\cdot MB=ME\cdot MF\)(Đpcm)

16 tháng 8 2021

YjgvnWe.png

( mấy cái cơ bản thì tự viết nhé )

a) góc MAO và góc MBO= 90 độ

xét tứ giác MAOB có góc MAO+MBO=180 độ

=> MAOB nội tiếp

b) Xét (O) có EB là tiếp tuyến của (O)

\(\Rightarrow\widehat{EBD}=\widehat{EAB}\left(=\frac{1}{2}sđ\widebat{DB}\right)\)

Xét tam giác EDB và tam giác EBA có:

\(\hept{\begin{cases}\widehat{AEB}chung\\\widehat{EBD}=\widehat{EAB}\left(cmt\right)\end{cases}\Rightarrow\Delta EDB~\Delta EBA\left(g-g\right)}\)

\(\Rightarrow\frac{BE}{DE}=\frac{AE}{BE}\)

\(\Rightarrow BE^2=AE.DE\left(1\right)\)

Vì \(AC//MB\Rightarrow\widehat{ACM}=\widehat{DME}\left(SLT\right)\)

Ta có: \(\hept{\begin{cases}\widehat{ACM}=\widehat{ABD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\\\widehat{ABD}=\widehat{MAD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\end{cases}\Rightarrow\widehat{ACM}=\widehat{MAD}}\)

\(\Rightarrow\widehat{DME}=\widehat{MAD}\)

Xét tam giác EMD và tam giác EAM có: 

\(\hept{\begin{cases}\widehat{DME}=\widehat{MAD}\\\widehat{AME}chung\end{cases}}\Rightarrow\Delta EMD~\Delta EAM\left(g-g\right)\)

\(\Rightarrow\frac{ME}{DE}=\frac{AE}{ME}\)

\(\Rightarrow ME^2=DE.AE\left(2\right)\)

Từ (1) và (2) \(\Rightarrow BE=ME\left(đpcm\right)\)

c)  mai nốt :V

16 tháng 8 2021

c) El à trung điểm MB;H là trung điểm AB

-> EH là đường trung bình tam giác MAB

=> EH// MA

=> góc EHB= góc MAB ( đồng vị )

Mà góc MAB = góc AKB ( = 1/2 số đo cung AB )

=> góc EHB= góc AKB

mà góc EHB+ góc IHB = 180 độ

=> góc AKB + góc IHB = 180 độ

=> BHIK nội tiếp

=> góc BHK= BIK  mà góc BHK= 90 độ

=> góc BIK= 90 độ

=> AK vuông góc với BI