K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

Đặt ˆMOB=αMOB^=α

⇒ˆMO′B=2α⇒MO′B^=2α (góc nội tiếp và góc ở tâm của đường tròn (O’))

Độ dài cung MB là:

lcungMB=π.O′M.2α1800=π.O′M.α900(1)lcungMB=π.O′M.2α1800=π.O′M.α900(1)

Độ dại cung MA là:

lcungMA=π.OM.α1800=2π.O′M.α1800=πO′M.α900(2)lcungMA=π.OM.α1800=2π.O′M.α1800=πO′M.α900(2)

(Vì OM = 2O’M)

Từ (1) và (2) ⇒ sđcung MA = sđcung MB



12 tháng 4 2017

Đặt ˆMOB=αMOB^=α

⇒ˆMO′B=2α⇒MO′B^=2α (góc nội tiếp và góc ở tâm của đường tròn (O’))

Độ dài cung MB là:

lcungMB=π.O′M.2α1800=π.O′M.α900(1)lcungMB=π.O′M.2α1800=π.O′M.α900(1)

Độ dại cung MA là:

lcungMA=π.OM.α1800=2π.O′M.α1800=πO′M.α900(2)lcungMA=π.OM.α1800=2π.O′M.α1800=πO′M.α900(2)

(Vì OM = 2O’M)

Từ (1) và (2) ⇒ sđcung MA = sđcung MB

9 tháng 8 2018

Giải bài 75 trang 96 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 75 trang 96 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

+ Trên đường tròn đường kính R, độ dài cung n0 bằng :

 Giải bài 72 trang 96 SGK Toán 9 Tập 2 | Giải toán lớp 9

1 tháng 8 2019

Giải bài 75 trang 96 SGK Toán 9 Tập 2 | Giải toán lớp 9

(góc nội tiếp và góc ở tâ của đường tròn (O'))

Độ dài cung  M A ⏜ là:

NV
5 tháng 1

a.

Ta có \(MA=MB\) (t/c hai tiếp tuyến cắt nhau)

\(OA=OB=R\)

\(\Rightarrow OM\) là trung trực AB hay OM vuông góc AB

AC là đường kính và B là điểm thuộc đường tròn \(\Rightarrow\widehat{ABC}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{ABC}=90^0\Rightarrow AB\perp BC\)

\(\Rightarrow BC||OM\) (cùng vuông góc AB)

b.

Do MA là tiếp tuyến \(\Rightarrow AM\perp AC\) hay tam giác MAC vuông tại A

AC là đường kính và K thuộc đường tròn \(\Rightarrow\widehat{AKC}\) là góc nt chắn nửa đường tròn

\(\Rightarrow\widehat{AKC}=90^0\) hay AK là đường cao trong tam giác vuông MAC

Áp dụng hệ thức lượng:

\(AC^2=CK.CM\Rightarrow CK.CM=\left(2R\right)^2=4R^2\)

c.

Em có nhầm đề ko nhỉ, vì 2 góc này hiển nhiên bằng nhau, ko cần chứng minh, do 1 góc là góc nội tiếp và 1 góc là góc tạo bởi tiếp tuyến và dây cung, cùng chắn cung BK.

NV
5 tháng 1

loading...

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

b: Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AMO}=30^0\)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}=60^0\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

c: Xét (O) có

CA,CP là các tiếp tuyến

Do đó: CA=CP và OC là phân giác của góc AOP

Xét (O) có

DB,DP là các tiếp tuyến

Do đó; DB=DP và OD là phân giác của góc BOP

ΔOAM vuông tại A

=>\(OA^2+AM^2=OM^2\)

=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)

=>\(AM=R\sqrt{3}\)

Chu vi tam giác MCD là:

\(C_{MCD}=MC+CD+MD\)

\(=MC+CP+MD+DP\)

\(=MC+CA+MD+DB\)

=MA+MB=2MA=\(=R\sqrt{3}\cdot2=2R\sqrt{3}\)

d: Ta có: OC là phân giác của góc AOP

=>\(\widehat{AOP}=2\cdot\widehat{COP}\)

Ta có: OD là phân giác của góc BOP

=>\(\widehat{BOP}=2\cdot\widehat{DOP}\)

Xét tứ giác OAMB có

\(\widehat{OAM}+\widehat{OBM}+\widehat{AMB}+\widehat{AOB}=360^0\)

=>\(\widehat{AOB}+60^0+90^0+90^0=360^0\)

=>\(\widehat{AOB}=120^0\)

Ta có: \(\widehat{AOP}+\widehat{BOP}=\widehat{AOB}\)

=>\(2\cdot\left(\widehat{COP}+\widehat{DOP}\right)=120^0\)

=>\(2\cdot\widehat{COD}=60^0\cdot2\)

=>\(\widehat{COD}=60^0\)

12 tháng 1

Thank youuu :3

28 tháng 8 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9