K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

A B C O I M

1.Vì đường kính của (O) là 10cm

\(\Rightarrow\) Bán kính của (O) là  \(R=\frac{10}{2}=5\)

\(\Rightarrow d\left(O,d\right)=3< R=5\)

\(\Rightarrow d\left(O\right)\)cắt nhau tại 2 điểm phân biệt

2 . Kẻ \(OI\perp AB\Rightarrow I\) là trung điểm AB

Vì \(OI\perp AB\Rightarrow OI=3\Rightarrow AI^2=OA^2-0I^2=5^2-3^2=16\)

\(\Rightarrow AI=4\Rightarrow AB=2AI=8\) vì I là trung điểm AB

3.Vì O, I là trung điểm AC,AB

=> OI là đường trung bình \(\Delta ABC\Rightarrow BC=2OI=6\)

4 . Vì AC là đường kính của (O) 

\(\Rightarrow CB\perp AB\Rightarrow CB\perp AM\)

Mà \(CA\perp CM\Rightarrow CB^2=AB.BM\)

\(\Rightarrow BM=\frac{BC^2}{AB}=\frac{6^2}{8}=\frac{9}{2}\)

 
12 tháng 7 2020

1) \(\Delta AOC\)cân tại O có OD là đường cao nên cũng là phân giác của \(\widehat{AOC}\), do đó \(\widehat{AOD}=\widehat{COD}\Rightarrow\widebat{AD}=\widebat{DM}\)

nên DA = DM. Vậy tam giác AMD cân tại D (đpcm)

2) Dễ thấy \(\Delta OEA=\Delta OEC\left(c-g-c\right)\), từ đó suy ra được \(\widehat{OAE}=\widehat{OCE}=90^0\)

Do đó \(AE\perp AB\). Vậy AE là tiếp tuyến chung của \(\left(O\right)\)và \(\left(O'\right)\)

3) Giả sử AM cắt \(\left(O\right)\)tại \(N'\). Ta có \(\Delta OAN'\)cân tại O và \(OM\perp AN'\)nên OM là đường trung trực của AN'. Từ đó ta được CA = CN'

Ta có \(\widehat{CN'A}=\widehat{CAM}\)\(\widehat{CAM}=\widehat{DOM}\), do đó \(\widehat{CN'H}=\widehat{COH}\). Suy ra bốn điểm C, N', O, H thuộc một đường tròn. Suy ra N' thuộc đường tròn ngoại tiếp \(\Delta CHO\). Do vậy \(N'\equiv N\)

Vậy ba điểm A, M, N thẳng hàng (đpcm)

4) Vì ME song song với AB và \(AB\perp AE\)nên \(ME\perp AE\)

Ta có hai tam giác MAO, EMA đồng dạng nên \(\frac{MO}{EA}=\frac{MA}{EM}=\frac{AO}{MA}\Rightarrow MA^2=AO.EM\)

Dễ thấy \(\Delta MEO\) cân tại M nên ME MO. = Thay vào hệ thức trên ta được\(MA^2=AO.MO\)

Đặt MO = x > 0 \(\Rightarrow MA^2=OA^2-MO^2=a^2-x^2\) 

Từ \(MA^2=AO.MO\)  suy ra \(a^2-x^2=ax\Leftrightarrow x^2+ax-a^2=0\)

Từ đó tìm được \(x=\frac{\left(\sqrt{5}-1\right)a}{2}\)

Vậy \(OM=\frac{\left(\sqrt{5}-1\right)a}{2}\)

Cho đường tròn (O) đường kính  C là điểm trên đường tròn (O) sao cho  Vẽ Chứng minh vuông. Tính độ dài CH và số đo  (làm tròn đến độ)Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại D. Chứng minh Tiếp tuyến tại A của đường tròn (O) cắt BC tại E. Chứng minh: Gọi I là trung điểm của CH. Tia BI cắt AE tại F. Chứng minh: FC là tiếp tuyến của đường tròn (O).Cho đường tròn (O) đường kính  C là...
Đọc tiếp

Cho đường tròn (O) đường kính  C là điểm trên đường tròn (O) sao cho  Vẽ Chứng minh vuông. Tính độ dài CH và số đo  (làm tròn đến độ)Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại D. Chứng minh Tiếp tuyến tại A của đường tròn (O) cắt BC tại E. Chứng minh: Gọi I là trung điểm của CH. Tia BI cắt AE tại F. Chứng minh: FC là tiếp tuyến của đường tròn (O).Cho đường tròn (O) đường kính  C là điểm trên đường tròn (O) sao cho  Vẽ Chứng minh vuông. Tính độ dài CH và số đo  (làm tròn đến độ)Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại D. Chứng minh Tiếp tuyến tại A của đường tròn (O) cắt BC tại E. Chứng minh: Gọi I là trung điểm của CH. Tia BI cắt AE tại F. Chứng minh: FC là tiếp tuyến của đường tròn (O).

0
22 tháng 4 2018

b) Xét tam giác AHO vuông tại H có:

A O 2 = A H 2 + O H 2

⇒ AB = 2AH = 8 (cm)

a: Xét (O) có

ΔABC nội tiếp

AC là đường kính

Do đó: ΔABC vuông tại B

ΔBAC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt{3}\)

Xét ΔBAC vuông tại B có

\(sinBAC=\dfrac{BC}{AC}=\dfrac{1}{2}\)

nên \(\widehat{BAC}=30^0\)

b: ΔOAB cân tại O

mà OH là đường cao

nên OH là phân giác của \(\widehat{AOB}\)

Xét ΔOAD và ΔOBD có

OA=OB

\(\widehat{AOD}=\widehat{BOD}\)

OD chung

Do đó: ΔOAD=ΔOBD

=>\(\widehat{OAD}=\widehat{OBD}=90^0\)

=>DB là tiếp tuyến của (O)

c: ΔABC vuông tại B

=>\(\widehat{BAC}+\widehat{BCA}=90^0\)

=>\(\widehat{BCA}=90^0-30^0=60^0\)

Xét ΔOBC có OB=OC và \(\widehat{BCO}=60^0\)

nên ΔOBC đều

=>ΔBOC cân tại B
ΔBOC cân tại B

mà BM là đường cao

nên M là trung điểm của OC

ΔOBE cân tại O

mà OM là đường cao

nên M là trung điểm của BE

Xét tứ giác OBCE có

M là trung điểm chung của OC và BE

nên OBCE là hình bình hành

Hình bình hành OBCE có OB=OE

nên OBCE là hình thoi

 

4 tháng 10 2017

c) Do tam giác ABC nội tiếp đường tròn (O) có AC là đường kính nên tam giác ABC vuông tại B

Khi đó, ta có:

AC2 = AB2 + BC2

Đề kiểm tra Toán 9 | Đề thi Toán 9