Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (d): y=ax+b(a<>0) là phương trình đường thẳng cần tìm
Vì (d)//y=-3x+2 nên \(\left\{{}\begin{matrix}a=-3\\b< >2\end{matrix}\right.\)
Vậy: y=-3x+b
Thay x=6 và y=0 vào (d), ta được:
\(b-3\cdot6=0\)
=>b-18=0
=>b=18
Vậy: (d): y=-3x+18
2:
a: Hệ số góc là 5 nên -2m+1=5
=>-2m=4
=>m=-2
b: (d1)//(d)
=>-2m+1=3 và m+3<>7
=>m=-1
c: Hai đường vuông góc với nhau
=>-1/2(-2m+1)=-1
=>m^2-1/2+1=0
=>m^2+1/2=0(loại)
Lấy A(1;9) và B(2;13) thuộc (d)
Gọi A',B' lần lượt là điểm đối xứng của A(1;9) và B(2;13) qua trục hoành Ox
Vì A' là điểm đối xứng của A(1;9) qua trục hoành Ox nên tọa độ của A' là:
\(\left\{{}\begin{matrix}x=x_A=1\\y=-y_A=-9\end{matrix}\right.\)
Vậy: A'(1;-9)
Vì B' là điểm đối xứng của B(2;13) qua trục hoành Ox nên tọa độ của B' là:
\(\left\{{}\begin{matrix}x_{B'}=x_B=2\\y_{B'}=-y_B=-13\end{matrix}\right.\)
=>B'(2;-13)
Ta có: A,B thuộc (d)
A',B' lần lượt là điểm đối xứng của A,B qua trục Ox
(d') là đường thẳng đối xứng của (d) qua trục Ox
=>A',B' thuộc (d')
Đặt (d'): y=ax+b(a\(\ne\)0)
Thay x=1 và y=-9 vào (d'), ta được:
\(1\cdot a+b=-9\)
=>a+b=-9(1)
Thay x=2 và y=-13 vào (d'), ta được:
\(2\cdot a+b=-13\)
=>2a+b=-13(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=-9\\2a+b=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=4\\a+b=-9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=-4\\b=-9-a=-9-\left(-4\right)=-5\end{matrix}\right.\)
Vậy: (d'): y=-4x-5
a) Gọi (d): y=ax+b
Vì (d)//y=2x-3 nên \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)
Vậy: (d): y=2x+b
Vì (d) đi qua điểm C(-1;4) nên
Thay x=-1 và y=4 vào (d), ta được:
\(2\cdot\left(-1\right)+b=4\)
hay b=6
Vậy: (d): y=2x+6
Thay y=0 vào (d), ta được:
2x+6=0
hay x=-3
Vậy: A(-3;0)
b) Vì y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\b=a+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=\dfrac{-4}{5}+4=\dfrac{-4}{5}+\dfrac{20}{5}=\dfrac{16}{5}\end{matrix}\right.\)
a) Gọi (d): y=ax+b
Vì (d)//y=2x-3 nên ta có: \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)
=> (d): y=2x+b
Thay x=-1 và y=4 vào (d), ta được:
\(2\cdot\left(-1\right)+b=4\)
\(\Leftrightarrow b=6\)
Vậy: (D): y=2x+6
Thay y=0 vào (d),ta được:
\(2x+6=0\)
\(\Leftrightarrow x=-3\)
Vậy: A(-3;0)
b) Vì đồ thị hàm số y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\-a+b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=4+a=4+\dfrac{-4}{5}=4-\dfrac{4}{5}=\dfrac{16}{5}\end{matrix}\right.\)
Vậy: \(a=-\dfrac{4}{5}\); \(b=\dfrac{16}{5}\)
c) Độ dài đoạn thẳng AB là:
\(AB=\sqrt{\left(-3-4\right)^2+\left(0-0\right)^2}=7\)(cm)
Độ dài đoạn thẳng AC là:
\(AC=\sqrt{\left(-3+1\right)^2+\left(0-4\right)^2}=2\sqrt{5}\left(cm\right)\)
Độ dài đoạn thẳng BC là:
\(BC=\sqrt{\left(4+1\right)^2+\left(0-4\right)^2}=\sqrt{41}\left(cm\right)\)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC\)
\(=7+2\sqrt{5}+\sqrt{41}\)
\(\simeq17,9\left(cm\right)\)
Còn thiếu tính góc tạo bởi đường thẳng BC và trục Ox mà bạn
a: a=3 nên y=3x+b
Thay x=2 và y=0 vào y=3x+b, ta được:
\(3\cdot2+b=0\)
=>b+6=0
=>b=-6
vậy: y=3x-6
b: Vì (d): y=ax+b//y=-x+6 nên \(\left\{{}\begin{matrix}a=-1\\b\ne6\end{matrix}\right.\)
vậy: (d): y=-x+b
Thay x=-1 và y=-9 vào (d), ta được:
\(b-\left(-1\right)=-9\)
=>b+1=-9
=>b=-10
Vậy: (d): y=-x-10
c: (d1): y=3x-6 có a=3>0
nên góc tạo bởi đường thẳng này với trục Ox là góc nhọn
Vì (d2): y=-x-10 có a=-1<0
nên góc tạo bởi đường thẳng này với trục Ox là góc tù
a: y=mx+1-2x=x(m-2)+1
Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\x\left(m-2\right)+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(m-2\right)=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{-1}{m-2}\end{matrix}\right.\)
=>\(A\left(-\dfrac{1}{m-2};0\right)\)
=>\(OA=\dfrac{1}{\left|m-2\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=x\left(m-2\right)+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\y=0\left(m-2\right)+1=1\end{matrix}\right.\)
=>B(0;1)
=>OB=1
ΔOAB cân tại O
=>OA=OB
=>\(\dfrac{1}{\left|m-2\right|}=1\)
=>|m-2|=1
=>\(\left[{}\begin{matrix}m-2=-1\\m-2=1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=1\\m=3\end{matrix}\right.\)
b: y=mx-2x+1
Tọa độ I cố định mà (d) luôn đi qua là:
\(\left\{{}\begin{matrix}x=0\\y=-2x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\y=-2\cdot0+1=1\end{matrix}\right.\)
c: O(0;0); I(0;1)
=>O,I đều nằm trên trục Ox
=>Ox là đường thẳng đi qua OI và có phương trình đường thẳng là y=0