Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi phương trình đường thẳng d cần tìm là y = a x + b ( a ≠ 0 )
Vì d song song với đường thẳng y = − 5 x − 3 n ê n a = − 5 ; b ≠ − 3 ⇒ d : y = − 5 x + b
Giao điểm của đường thẳng d với trục hoành có tọa độ (5; 0)
Thay x = 5 ; y = 0 vào phương trình đường thẳng d: y = − 5 x + b ta được
− 5 . 5 + b = 0 ⇒ b = 25 ( T M ) ⇒ y = − 5 x + 25
Vậy d: y = − 5 x + 25
Đáp án cần chọn là: C
a: B đối xứng A qua trục tung Oy
=>\(\left\{{}\begin{matrix}x_B=-x_A=-2\\y_B=y_A=1\end{matrix}\right.\)
Vậy: B(-2;1)
b: C đối xứng A qua trục Ox
=>\(\left\{{}\begin{matrix}x_C=x_A=2\\y_C=-y_A=-1\end{matrix}\right.\)
Vậy: C(2;-1)
c: D đối xứng A qua O
=>O là trung điểm của AD
=>\(\left\{{}\begin{matrix}x_A+x_D=0\\y_A+y_D=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=-x_A=-2\\y_D=-y_A=-1\end{matrix}\right.\)
Vậy: D(-2;-1)
d: (d): y=2x-1
=>(d): 2x-y-1=0
E đối xứng A qua (d)
=>(d) là đường trung trực của AD
Gọi (d2): ax+by+c=0 là phương trình đường thẳng AD
(d) là trung trực của AD
=>(d) vuông góc (d2) tại trung điểm của AD(1) và (d2) đi qua A(2;1)
(d): 2x-y-1=0
=>(d2): x+2y+c=0
Thay x=2 và y=1 vào (d2), ta được:
\(c+2+2\cdot1=0\)
=>c=-4
=>(d2): x+2y-4=0
Tọa độ giao điểm F của (d) với (d2) là:
\(\left\{{}\begin{matrix}x+2y-4=0\\2x-y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=4\\2x-y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+4y=8\\2x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=7\\x+2y=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{7}{5}\\x=4-2y=4-\dfrac{14}{5}=\dfrac{6}{5}\end{matrix}\right.\)
(1) suy ra F là trung điểm của AE
=>\(\left\{{}\begin{matrix}\dfrac{6}{5}=\dfrac{x_A+x_E}{2}=\dfrac{2+x_E}{2}\\\dfrac{7}{5}=\dfrac{y_A+y_E}{2}=\dfrac{y_E+1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_E+2=\dfrac{12}{5}\\y_E+1=\dfrac{14}{5}\end{matrix}\right.\Leftrightarrow E\left(\dfrac{2}{5};\dfrac{9}{5}\right)\)
a) Gọi phương trình đường thẳng cần lập là \(y=ax+b\left(d_1\right)\).
Để \(\left(d_1\right)\)//\(\left(d\right)\) thì \(a=2\) \(\Rightarrow\left(d_1\right):y=2x+b\).
Xét phương trình hoành độ giao điểm của \(\left(d_1\right)\) và \(\left(d'\right)\):
\(2x+b=3x-2\Leftrightarrow x=b+2\).
Hai đường thẳng này cắt nhau tại điểm có hoành độ là 2
\(\Leftrightarrow b+2=2\Leftrightarrow b=0\).
Vậy phương trình đường thẳng cần lập là \(\left(d_1\right):y=2x\).
b) Gọi phương trình đường thẳng cần lập là \(y=ax+b\left(d_2\right)\).
\(\left(d_2\right)\perp\left(d'\right)\Leftrightarrow3a=-1\Leftrightarrow a=-\dfrac{1}{3}\)
\(\Rightarrow\left(d_2\right):y=-\dfrac{1}{3}x+b\).
Xét phương trình hoành độ giao điểm của \(\left(d_2\right)\) và \(\left(d\right)\):
\(2x-3=-\dfrac{1}{3}x+b\Leftrightarrow\dfrac{7}{3}x=b+3\Leftrightarrow x=\dfrac{3b+9}{7}\)
\(\Rightarrow y=2x-3=\dfrac{6b-3}{7}\).
Hai đường thẳng này cắt nhau tại điểm có tung độ bằng -1
\(\Leftrightarrow\dfrac{6b-3}{7}=-1\Leftrightarrow6b-3=-7\Leftrightarrow b=-\dfrac{2}{3}\).
Vậy phương trình đường thẳng cần lập là \(\left(d_2\right):y=-\dfrac{1}{3}x-\dfrac{2}{3}\).
Lấy A(1;9) và B(2;13) thuộc (d)
Gọi A',B' lần lượt là điểm đối xứng của A(1;9) và B(2;13) qua trục hoành Ox
Vì A' là điểm đối xứng của A(1;9) qua trục hoành Ox nên tọa độ của A' là:
\(\left\{{}\begin{matrix}x=x_A=1\\y=-y_A=-9\end{matrix}\right.\)
Vậy: A'(1;-9)
Vì B' là điểm đối xứng của B(2;13) qua trục hoành Ox nên tọa độ của B' là:
\(\left\{{}\begin{matrix}x_{B'}=x_B=2\\y_{B'}=-y_B=-13\end{matrix}\right.\)
=>B'(2;-13)
Ta có: A,B thuộc (d)
A',B' lần lượt là điểm đối xứng của A,B qua trục Ox
(d') là đường thẳng đối xứng của (d) qua trục Ox
=>A',B' thuộc (d')
Đặt (d'): y=ax+b(a\(\ne\)0)
Thay x=1 và y=-9 vào (d'), ta được:
\(1\cdot a+b=-9\)
=>a+b=-9(1)
Thay x=2 và y=-13 vào (d'), ta được:
\(2\cdot a+b=-13\)
=>2a+b=-13(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=-9\\2a+b=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=4\\a+b=-9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=-4\\b=-9-a=-9-\left(-4\right)=-5\end{matrix}\right.\)
Vậy: (d'): y=-4x-5