K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2022

Hoành độ của 2 giao điểm là nghiệm của phương trình

x2=mx+m+1x2=mx+m+1

⇒x2−mx−m−1=0⇒x2-mx-m-1=0

Δ=(−m)2+4(m+1)=m2+4m+4=(m+2)2≥0∀mΔ=(-m)2+4(m+1)=m2+4m+4=(m+2)2≥0∀m

Vậy phương trình luôn có  nghiệm 

Để (P)(P) cắt (d)(d) tại 2 điểm có hoành độ x1x1 và x2x2 thì

Δ>0Δ>0

⇒m≠2⇒m≠2 

Để 2 giao điểm khác phía với trục tung thì

x1.x2<0x1.x2<0

Theo hệ thức vi-ét

⇒⇒{x1.x2=−m−1x1+x2=m{x1.x2=−m−1x1+x2=m

Để −m−1<0-m-1<0

⇒m≻1⇒m≻1

Ta lại có

{x1+x2=m2x2−3x2=5{x1+x2=m2x2−3x2=5

⇒{2x1+2x2=2m2x1−3x2=5⇒{2x1+2x2=2m2x1−3x2=5

⇒{x1+x2=m5x2=2m−5⇒{x1+x2=m5x2=2m−5

⇒{x1+x2=mx2=2m−55⇒{x1+x2=mx2=2m−55

⇒⎧⎪ ⎪⎨⎪ ⎪⎩x1=5m−2m+55=3m+55x2=2m−55⇒{x1=5m−2m+55=3m+55x2=2m−55

Thay x1x1 và x2x2 vào

x1.x2=−m−1x1.x2=-m-1

Ta được

3m+55.2m−55=−m−13m+55.2m-55=-m-1

⇒6m2−5m−25=−25m−25⇒6m2-5m-25=-25m-25

⇒6m2+20m=0⇒6m2+20m=0

⇒2m(3m+10)=0⇒2m(3m+10)=0

⇒⇒⎡⎣m=0(TM)m=−103(KTM)[m=0(TM)m=−103(KTM) 

Vậy với m=0m=0 thì thõa mãn đầu bài 

Sai dấu làm dò mãi mới ra

5 tháng 6 2023

b) Phương trình hoành độ giao điểm của (P) và (d):

x² = mx - m + 1

⇔ x² - mx + m - 1 = 0

∆ = m² - 4.1.(m - 1)

= m² - 4m + 4

= (m - 2)² ≥ 0 với mọi m ∈ R

⇒ Phương trình luôn có hai nghiệm

Theo Viét ta có:

x₁ + x₂ = m (1)

x₁x₂ = m - 1 (2)

Lại có x₁ + 3x₂ = 7  (3)

Từ (1) ⇒ x₁ = m - x₂ (4)

Thay x₁ = m - x₂ vào (3) ta được:

m - x₂ + 3x₂ = 7

2x₂ = 7 - m

x₂ = (7 - m)/2

Thay x₂ = (7 - m)/2 vào (4) ta được:

x₁ = m - (7 - m)/2

= (2m - 7 + m)/2

= (3m - 7)/2

Thay x₁ = (3m - 7)/2 và x₂ = (7 - m)/2 vào (2) ta được:

[(3m - 7)/2] . [(7 - m)/2] = m - 1

⇔ 21m - 3m² - 49 + 7m = 4m - 4

⇔ 3m² - 28m + 49 + 4m - 4 = 0

⇔ 3m² - 24m + 45 = 0

∆' = 144 - 3.45 = 9 > 0

Phương trình có hai nghiệm phân biệt:

m₁ = (12 + 3)/3 = 5

m₂ = (12 - 3)/3 = 3

Vậy m = 3; m = 5 thì (P) và (d) cắt nhau tại hai điểm có hoành độ thỏa mãn x₁ + 3x₂ = 7

 

a: Thay x=0 và y=2 vào (d), ta được:

1-m=2

=>m=-1

5 tháng 6 2021

undefined

26 tháng 4 2020

a) PT hoành dộ giao điểm d và (P):

x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)

d tiếp xúc với (P) <=> m=-2 tìm được x=-1

Tọa độ điểm A(-1;1)

b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1

Điều kiện để 2 giao điểm khác phía trục tung là:m >-1

Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)

Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)

a: f(2)=2^2=4

thay x=2 và y=4 vào (d), ta được:

4(m-1)+m=4

=>5m-4=4

=>m=8/5

b: PTHĐGĐ là;

x^2-2(m-1)x-m=0

Để (P) cắt (d) tại hai điểm nằm về hai phía so với trục tung thì -m<0

=>m>0

x1^2+2(m-1)x2=6

=>x1^2+x2(x1+x2)=6

=>x1^2+x2^2+x1x2=6

=>(x1+x2)^2-x1x2=6

=>(2m-2)^2-(-m)-6=0

=>4m^2-8m+4+m-6=0

=>m=2(nhận) hoặc m=-1/4(loại)

30 tháng 10 2021

PTHĐGĐ là:

\(-x^2=-mx+m-1\)

\(\Leftrightarrow x^2-mx+m-1=0\)

\(\Delta=\left(-m\right)^2-4\cdot1\left(m-1\right)\)

\(=m^2-4m+4\)

\(=\left(m-2\right)^2\ge0\forall m\)

Do đó: Phương trình luôn có nghiệm với mọi m

Áp dụng hệ thức Vi-et, ta có:,

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=17\)

\(\Leftrightarrow m^2-2\left(m-1\right)-17=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-3\end{matrix}\right.\)

22 tháng 3 2023

x_{1}x_{2} là x1 và x2

 

NV
24 tháng 1 2022

Phương trình hoành độ giao điểm:

\(x^2=2\left(m-2\right)x+5\Leftrightarrow x^2-2\left(m-2\right)x-5=0\)

Do \(ac=-5< 0\Rightarrow\) phương trình luôn có 2 nghiệm trái dấu

\(\Rightarrow x_1< 0< x_2\Rightarrow x_2+2>0\)

Theo hệ thức Viet: \(x_1+x_2=2\left(m-2\right)\)

Ta có:

\(\left|x_1\right|-\left|x_2+2\right|=10\)

\(\Leftrightarrow-x_1-x_2-2=10\)

\(\Leftrightarrow-2\left(m-2\right)=12\)

\(\Leftrightarrow m=-4\)

28 tháng 1 2017

Đáp án B