Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hai đường song thì m+3=4
=>m=1
c: (d): y=4x+4
Tọa độ giao điểm là:
4x+4=x-1 và y=x-1
=>3x=-5 và y=x-1
=>x=-5/3 và y=-8/3
\(a,\Leftrightarrow\left\{{}\begin{matrix}m+2=-1\\-2m\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\m\ne-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow m=-3\\ b,\text{PTHDGD: }2x+1=\left(m+2\right)x-2m\\ \text{Thay }x=-2\Leftrightarrow-2m-4-2m=-3\\ \Leftrightarrow-4m=1\Leftrightarrow m=-\dfrac{1}{4}\)
a, Đường thẳng d cắt trục hoành tại điểm có hoành độ bằng 2 nên
( d ) đi qua A( 2,0 )
Thay A( 2,0 ) vào đường thẳng d ta được
\(\left(1-m\right).2+m+2=0\)
\(2-2m+m+2=0\)
\(4-m=0\)
\(m=4\)
b, Đường thẳng d song song vs đường thẳng y = 2x - 1 nên
1 - m = 0 và m + 2 khác -1
m = 1 và m khác -3
Để (d1) // (d2)\(\Rightarrow\left\{{}\begin{matrix}m+4=-2\\-m+6\ne3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m-4\\m\ne3\end{matrix}\right.\Rightarrow m=-6\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+4=-2\\-m+6\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-6\\m\ne3\end{matrix}\right.\Leftrightarrow m=-6\)
ĐKXĐ: \(m\ne1\)
Gọi \(\left(d'\right):y+2x-3=0\)
\(\Leftrightarrow\left(d'\right):y=-2x+3\)
Để \(\left(d\right)\perp\left(d'\right)\) thì: \(\left(m-1\right).\left(-2\right)=-1\)
\(\Leftrightarrow-2m+2=-1\)
\(\Leftrightarrow-2m=-3\)
\(\Leftrightarrow m=\dfrac{3}{2}\) (nhận)
\(\Rightarrow\left(d\right):y=\dfrac{1}{2}x+n+2\)
Thay tọa độ điểm A(2; 4) vào (d) ta được:
\(4=\dfrac{1}{2}.2+n+2\)
\(\Leftrightarrow1+n+2=4\)
\(\Leftrightarrow n=4-1-2\)
\(\Leftrightarrow n=1\)
Vậy \(m=\dfrac{3}{2};n=1\)
a: Để (d)//y=3x+1 thì \(\left\{{}\begin{matrix}m-3=3\\m+2< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=6\\m< >-1\end{matrix}\right.\)
=>m=6
b: (d): y=(m-3)x+m+2
=mx-3x+m+2
=m(x+1)-3x+2
Tọa độ điểm mà (d) luôn đi qua là:
\(\left\{{}\begin{matrix}x+1=0\\y=-3x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\cdot\left(-1\right)+2=3+2=5\end{matrix}\right.\)
c: y=(m-3)x+m+2
=>(m-3)x-y+m+2=0
Khoảng cách từ O đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\left(m-3\right)+0\cdot\left(-1\right)+m+2\right|}{\sqrt{\left(m-3\right)^2+\left(-1\right)^2}}=\dfrac{\left|m+2\right|}{\sqrt{\left(m-3\right)^2+1}}\)
Để d(O;(d))=1 thì \(\dfrac{\left|m+2\right|}{\sqrt{\left(m-3\right)^2+1}}=1\)
=>\(\sqrt{\left(m-3\right)^2+1}=\left|m+2\right|\)
=>\(\sqrt{\left(m-3\right)^2+1}=\sqrt{\left(m+2\right)^2}\)
=>\(\left(m-3\right)^2+1=\left(m+2\right)^2\)
=>\(m^2-6m+9+1=m^2+4m+4\)
=>-6m+10=4m+4
=>-10m=-6
=>\(m=\dfrac{3}{5}\left(nhận\right)\)
a: Thay x=2 và y=-3 vào (d), ta được:
\(2\left(2m-1\right)-2m+5=-3\)
=>\(4m-2-2m+5=-3\)
=>2m+3=-3
=>2m=-6
=>\(m=-\dfrac{6}{2}=-3\)
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)
=>m=3/2
Thay m=3/2 vào (d), ta được:
\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)
y=2x+2 nên a=2
Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox
\(tan\alpha=2\)
=>\(\alpha\simeq63^026'\)
a: Để (d)//y=-x+3m thì m-4=-1
hay m=3
Lời giải:
Để $(d)$ song song với $y=-x+3m$ thì:
\(\left\{\begin{matrix} m-4=-1\\ -m+3\neq 3m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=3\\ m\neq \frac{-3}{2}\end{matrix}\right.\Leftrightarrow m=3\)