K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

A B M C D E x

a) Mx\(⊥\)AB, C\(\in\)Mx, MC=MA \(\Rightarrow\)\(\Delta\)AMC vuông cân tại M \(\Rightarrow\)\(\widehat{MAC}=\widehat{MCA}=45^0\)

Tương tự \(\Delta\)BMD vuông cân tại M\(\Rightarrow\widehat{MBD}=\widehat{MDB}=45^0\)

\(\Rightarrow\widehat{MAC}=\widehat{MDB}=45^0\)hay \(\widehat{MAC}=\widehat{CDE}=45^0\)

\(\Rightarrow\Delta CED\)vuông cân tại E \(\Rightarrow AE⊥BD\)(đpcm)

b) BD \(⊥\)AC tại E, MD\(⊥\)AB => D là trực tâm của \(\Delta\)ABC.

14 tháng 8 2021
Ai giúp vứi
12 tháng 5 2022

Giúo tui với

 

DD
12 tháng 5 2022

a) Xét tam giác \(ABM\) và tam giác \(NDM\):

\(\widehat{BAM}=\widehat{DNM}\left(=90^o\right)\)

\(MB=MD\)

\(\widehat{AMB}=\widehat{NMD}\)

Suy ra \(\Delta ABM=\Delta NDM\) (cạnh huyền - góc nhọn) 

b) \(\Delta ABM=\Delta NDM\) suy ra \(\widehat{ABM}=\widehat{NDM}\)

mà \(\widehat{ABM}=\widehat{EBM}\). 

suy ra \(\widehat{NDM}=\widehat{EBM}\) suy ra tam giác \(EBD\) cân tại \(E\)

suy ra \(BE=DE\). 

 

tham khảo

kẻ thêm MK⊥BC⊥BC

ta có ΔABM=ΔKBM(ch.cgn)ΔABM=ΔKBM(ch.cgn)

lí do vì góc B1=góc B2(do BM phân giác), 

góc BKM=góc BAM=90oo, cạnh BM chung

từ đó=>AM=MK(các cạnh t ứng)(1)

chứng minh ΔMND=ΔMAB(ch.cgn)ΔMND=ΔMAB(ch.cgn)

do góc M1=M2(đối đỉnh), MB=MD(gt), góc DNM=góc BAM(=90 độ)

=>AM=MN(2) từ(1)(2)=>MN=MK

trong tam giác MKC vuông tại K thì cạnh huyền MC lớn nhất

=>MC>MK<=>MC>MN(dpcm)

12 tháng 12 2021

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AC//BD

16 tháng 7 2021

Câu C bạn cm AFCE là hình chữ nhật , FE là đường chéo => E,F,M thẳng hàng vì 2 đường chéo hình chữ nhật đi qua trung điểm của mỗi đường.